
Pragmatic Clustering
Mike Cannon-Brookes

CEO, Atlassian Software Systems

1



Confluence
• Largest enterprise wiki in the world

• 2000 customers in 60 countries

• J2EE application, ~500k LOC

• Hibernate, Lucene, Spring, WebWork

• Deployed by customers behind the firewall

http://www.atlassian.com/confluence

2

http://www.atlassian.com/confluence
http://www.atlassian.com/confluence


Why Cluster?

• Horizontal scalability

• More machines = more scale

• Customer: our use of Confluence is increasing beyond a 
single machine.

• High availability

• More machines = more overall uptime

• Customer: our wiki cannot be down.

3



The Plan

Start by asking a simple question:

“What breaks when 2 
Confluence instances run 
against a single database?”

4

Breakages? For example dirty cache reads.



The Answer

5



The Answer

Expected

Caches

5



The Answer

Expected

Caches

Actual

Caches
Lucene Indexes

Events
Configuration

File Access
Scheduled Jobs

5



Strategies

Strategy
Central
Share

Distributed
Share

Synchronize Temporize

Example Database
Clustered 

cache
Lucene index 

per node
Thumbnails

6

With synchronised, need to handle desynchronisation case (ie new node coming up)

Clustered cache is ‘distributed’ share, database is ‘centralised’ share



First...
Get used to trade offs!

7

There is no perfect design. Pick the closest to you and handle the trade offs. 



Our Design

• All nodes identical

• No shared file system

• Sticky sessions

• Low admin overhead

• Assume the database scales

8

No master / slave, as this simplifies the topology.
Confluence is an end user application, we can’t assume the customer has a shared FS
No session replication overhead is great, small downside of session loss.
We ship this to end customers, so administration must be simple. Example here is the cluster name 
vs IP/port combination.
Note, this design does not please _everyone_ - eg www.ibm.com remote clusters don’t work.



Implementation
Lessons

Caches, Cluster Management, Lucene, Events, Files, 
Scheduled Jobs, Testing

9



1. Caches

• Cached data per node leads to dirty reads

• No caches = most scalable!

• Push all work into the database

• Not performant for most apps

• Otherwise, need a replicated cache

Problem

10



1. Caches

• Use a library

• Commercial: Tangosol Coherence, Gigaspaces, 
Terracotta, Gemstone

• Open Source: Ehcache, OSCache, JBoss Cache

• Confluence: Tangosol Coherence

• Make everything serializable

• Select partitioned vs replicated caches

Solution Strategy: distributed share

11

Amusing anecdote - first time we brought up a clustered cache, the entire development team 
became a cluster!



2. Cluster Management

• Node discovery & heartbeat

• Cluster information

• Execute code ‘across’ the cluster

Problem

Solution

1. Choose a good library

2. Implement it all yourself!

12

Amusing anecdote - first time we brought up a clustered cache, the entire development team 
became a cluster!



Solution

2. Cluster Management

• Low admin overhead is hard

• Cluster name → multicast IP / port

• eg “XYZ Cluster” → 234.3.1.2 : 3535

• Allow complex config options via XML

• Beware automated discovery!

• eg entire dev team working together

13

Amusing anecdote - first time we brought up a clustered cache, the entire development team 
became a cluster!



2½. Cluster Split

• Cluster ‘splits’ into 
fragments

• Each fragment can see 
DB, but not others

• Potential for massive data 
corruption

Node Node Node

Database

!
Problem

14

Extranet- firewall blocked multicast between machines, but TCPIP traffic to database was fine.



2½. Cluster Split

• Detect split and shutdown

• Periodically write a random number to DB and cache

• Also when nodes join / leave cluster

• Periodically check that number has not changed

• If number is detected to have changed, split!

• Shutdown fragment to all access.

• Write new number, so others shutdown next check.

Solution

15



3. Lucene

• Indexing vital to all transactional applications

• Must live on file system

• Doesn’t like network file systems

• Too slow, writes must be serialized

Problem

16



3. Lucene

1. Dedicated search nodes

• No longer all nodes identical

• Have to manage two node ‘classes’

 

Solutions

17



1. Dedicated search nodes

2. One node indexes

• Batch push of index diffs around cluster

• Need master/slave - not identical

• Potential for data loss if index node goes down

• Index diff sending fragile & complex

3. Lucene
Solutions

18



3. Lucene
Solutions

1. Dedicated search nodes

2. One node indexes

3. All nodes index

• Persistent queue of index operations (in database, no JMS)

• 2 hour queue (downtime window)

• If down longer, re-index on join

• Remember - index is derived data

• Trade off - work is being done everywhere

Strategy: synchronize

19



4. Events

• Confluence largely event driven internally

• Should events be propagated around cluster?

• Event scopes: 

• per node - work done on originating node

• per cluster - work done on every node

Problem

20



4. Events

1. Local listener hears a cluster scoped event 

• eg PluginInstallEvent implements ClusterableEvent

2. Wraps in new ClusterBroadcastEvent 

3. Broadcasts CBE around cluster

• Unreliable messaging (via Tangosol)

• Offline nodes don’t care about events

4. Listeners then listen for ClusterBroadcastEvent

• Unwrap, check contents, act if necessary (ie plugin install)

Solution

21



4. Events

• Beware exponential scale problems!

• Avoid clustered events where possible

• Use local event + clustered cache

• Reduce ‘work done everywhere’

• Sometimes not possible - ie classloading

Solution

22



5. Files

• Efficient to store files on disk

• Local files not visible to cluster

• Confluence:

• Configuration files

• Attachments

• Installed plugins

Problem

• Thumbnails

• Files generated for download 
(eg charts & PDFs)

23



5. Files

1. Network file system / SAN

• Never as fast as local file system

• File locking problems

• Confluence: can’t guarantee user has one!

Solutions Strategy: central share

24



5. Files

1. Network file system / SAN

2. Use database, remaining files are temporary

• Config files & attachments moved into database

• Attachments spooled to local file system to serve

• Thumbnails, PDFs, charts generated on each node

• Simpler architecture outweighs duplicated work

• Trash periodically, regenerate anytime

Solutions Strategy: central share & temporize

25

Example of Telenor problem with Xmas party photos and transactions in database bringing 
Confluence down



6. Scheduled Jobs

• Confluence uses Quartz for scheduled jobs

• Different job types:

• delete local temp files - on every node

• send notification email - once per cluster

Problem

26



6. Scheduled Jobs

• Divide up jobs into two scopes

• LocalJob - executed on every node

• ClusterJob - executed once per cluster

• Per node - jobs behave as normal

• Per cluster - ClusterJobStore

• Implemented new Quartz JobStore

• Backed by clustered cache

Solution Strategy: distributed share

27



7. Testing

• Automated, repeatable testing is crucial

• Automated testing of clusters is hard!

• Confluence:

• Uses Bamboo for 
continuous integration

Problem

28



7. Testing

• Functional Testing

• Problems similar to multithreaded testing

• Confluence: 

• JWebUnit with switched 
WebConversations

• Cargo to fire multiple web containers

Solution

29



7. Testing

• Load & Performance Testing

• Repeatable load test 

• Measure continual progress

• Confluence: 

• Originally reused JWebUnit tests

• Switched to raw HTTP, less overhead

Solution

30



Q&A

Java guru? J2EE junkie? Think VB is for drinking?

Join the best Java engineering team at 
Australia’s fastest growing software company!

http://www.atlassian.com/about/jobs
Email me: mike@atlassian.com

31

http://www.atlassian.com/about/jobs
http://www.atlassian.com/about/jobs
mailto:mike@atlassian.com
mailto:mike@atlassian.com

