
Lucene: Generic Data Indexing

Mike Cannon-Brookes
CEO, Atlassian Software Systems
Java Champion

The following presentation
contains egregious product
placement and lots of text.

Indexing:
"The process of converting a collection of data into a
format suitable for easy search and retrieval.”

JIRA: Issue Search

• 1.4 - Use DB for all queries, Lucene only if full text search -
results 'merged'

• 2.0 - Use Lucene for all search, Java for permissioning -
results iterated over and non-view stripped

• 2.2 - Use Lucene for all queries including perms - sorting still
done in Java

• 2.4 - Use Lucene for all queries, retrieving issues and
displaying - no DB access at all!

• 3.0 - Switch "stats" over to using Lucene via HitCollectors

JIRA: Lucene History

JIRA: Statistics

All from Lucene!

• Text Analysis & Stemming

• “Michael jogs in the park” > “michael, jog, park”

• Proximity Queries

• “cat NEAR dog”

• Wildcard Queries

• “jog*”, “j?g”

• Results returned scored by relevance

Lucene: Full Text Search

Lucene: Generic Data Indexing (GDI)

• Fast retrieval of complex data objects

• Built from one database, multiple databases,
files, anywhere

• Not a single table - just use a database index

Lucene: Generic Data Indexing (GDI)

•Powerful pre-built query tools

• RangeQuery, BooleanQuery etc

“select issues created between
2001 and 2004,
with no components, no versions,
still unresolved that have > 4
votes”

Lucene: Generic Data Indexing (GDI)

• Results returned sorted in custom order

• Sort, SortField

Lucene: Generic Data Indexing (GDI)

• AOP-like result filtering and hit collection

• QueryFilter and HitCollector

Lucene: Generic Data Indexing (GDI)

• Integrated full text search - only if you need it!

• “Free!”

select issues created between 2001 and 2004,
with no components, no versions,
still unresolved that have > 4 votes

and match the query “dash*”

Database V1

Fred

Reporter

Bill

Fred

Assignee

Collect
laundry

JRA-2

Buy milkJRA-1

SummaryIssue

Issues

Query: select * from issues where assignee = ‘fred’

Database V2

FredReporterJRA-2

BillAssigneeJRA-2

FredAssigneeJRA-1

ValueFieldIssue

Collect
laundry

JRA-2

Buy milkJRA-1

SummaryIssue

Issues Fields

Query: select * from issues, fields
where fields.field = ‘Assignee’ and fields.value = ‘fred’

And fields.issue = issues.issue

Database V3

Issues

Fields

Query: ? ? ?

Components Versions

FieldValues

CommentsAttachments

IssueFieldValue

IssueProperties

How is Lucene fast?

Fredassignee

Billreporter

Objects

Fredassignee

Janereporter

Billassignee

Fredreporter

field

object

How is Lucene fast?

Fredassignee

Billreporter

Objects

Fredassignee

Janereporter

Billassignee

Fredreporter docId: 3

docId: 2

docId: 1

Docs

reporter : Bill
assignee : Fred
component : 1
component : 4
component : 5
created : 20070320

field : value …

document

How is Lucene fast?

1Bill

2Jane

3Fred
Fredassignee

Billreporter

Objects

Fredassignee

Janereporter

Billassignee

Fredreporter
3Bill

1,2Fred

reporter

assignee

docId: 3

docId: 2

docId: 1

Docs Inverted Index

field

doc idsterms

How is Lucene fast?

1001Bill

0102Jane

0013Fred
Fredassignee

Billreporter

Objects Inverted Index

Fredassignee

Janereporter

Billassignee

Fredreporter
0013Bill

1101,2Fred

reporter

assignee

docId: 3

docId: 2

docId: 1

Docs bitset

of terms < # of docs

• Store Denormalised Data

• Issue object, fields - one single Lucene document

• No record de-duplication needed as per SQL query

• Native Java API

• Useful for things like sorting where a DB can't do it

• Java specific sort algorithm for issue keys

• Version sequencing - v. complex to do in DB

Advantages For Generic Data Indexing

Advantages For Generic Data Indexing

•Constant time & capabilities

• Our apps are cross platform, OS, JDK, database

• Lucene works pretty much the same across all of them unlike SQL

• Local file system access (most commonly) which is faster than DB as no
network time

•Constant index format

• Readable from Java, C, Perl, Ruby etc

•QueryFilters & HitCollectors!

• Call back object for hit collection
• Great for statistical operations where content / score

is irrelevant
• JIRA - StatusHitCollector for ‘bucketing’

• Fast because:
• Retrieve only fields you need
• Minimum number of loops

HitCollector

HitCollector

• AOP for query results

• BitSet representing possible matches

• Complex in SQL to do, ends up being done in Java

• Permissioning on top of any search

•Construct once per request

•Results are cached in the filter

QueryFilter

QueryFilter

• JIRA - User driven queries an arbitrary data model
• Plugins index/search their own 'fields’ - future proof!
• QueryFilters for permissions - cached per request
• HitCollectors for all statistics / dashboard

Atlassian: Examples Of Lucene Usage

• Confluence - Full text search of wiki pages

• SearchExtractor allows plugins to add meta data to documents

• Also used to search attachment contents & metadata

• eg image file sizes

• Arbitrary ‘page set’ retrieval

• QueryFilter used extensively for security

Atlassian: Examples Of Lucene Usage

• Bamboo - Build telemetry statistics via Lucene

• Fast over millions of rows - data on every test/suite/build run, ever.

• Use Lucene to aggregate data into useful statistics

• HitCollectors used extensively for telemetry data

Atlassian: Examples Of Lucene Usage

• One Big Singleton

• Updates require serialization - indexes are write once, read many

• Jira vs Confluence different access/write strategies

• Delete / Update Operations

• Lucene wasn’t built for fast changing data

• Delete operation is just a flag op & Update requires delete / re-add

• Fixed in Lucene 2.1 - http://issues.apache.org/jira/browse/LUCENE-565

• Writing Is Expensive

• Opening/closing reader/writers proportional to index size

Problems For GDI

Problems For GDI

•Timing Of index.optimise()

• Indexes get fragmented - optimise() defrags

• Tricky to time this as v. slow on large indexes

• Eden space strategy can solve this

•Small index for ‘updated’ data, large for ‘old’ data

•Optimize large index rarely, small frequently - like GC.

•MultiIndexSearcher allows search on multiple indexes like one

Problems For GDI

•Non Transactional

• DB can have data that index misses, or vice versa

• Compass is a solution here - haven’t tested

• Otherwise, architect correct design knowing Lucene

•Optionitis

• Write settings can require a lot of knowledge and tuning

• eg MAX_MERGE_DOCS

•Local storage - can be a problem in a cluster

• See my other presentation for clustering strategies!

• JIRA
• Synchronous indexing > tricky locking problems at scale
• More updates than creates > heavier index load
•Fixed with Lucene 2.1!

• Slower updates, statistics always correct

• Confluence

• Asynchronous indexing

• Updates are queued, flushed every minute

• Clusterable and faster ‘net’ time for user

• ‘Recent Updates’, ‘Search’ up to 1 min inaccurate

GDI Lucene Usage Models

• Use derived data only, so can be recreated at will

• Store -1 for null because nature of fields

• Can't query Lucene for ‘lack of a field’ - ie “No Component”

• Keep open a single searcher and 'flip it' after writing

• ThreadLocals are valuable in web apps

• Use for Searchers, BooleanQueries and QueryFilters that are expensive to create per
search but don’t change per request (10s of queries per request)

• Understand Lucene to adjust your usage to your app

• Index dates to highest granularity possible, prevent term explosion

• Remember Lucene storage? YYMMDD vs YYMMDDHHmmSSSS

Tips

Links

Luke - useful tool to examine indexes
• http://www.getopt.org/luke

Lucene In Action - awesome book
• http://www.lucenebook.com

Compass - Lucene abstraction framework
• http://www.opensymphony.com/compass

Q & A

P.S. Java guru? Atlassian needs engineers!

- Sydney or San Francisco.

http://www.atlassian.com/about/jobs

Email me: mike@atlassian.com

