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Indexing:
"The process of converting a collection of data into a
format suitable for easy search and retrieval.”



JIRA: Issue Search



• 1.4 - Use DB for all queries, Lucene only if full text search -
results 'merged'

• 2.0 - Use Lucene for all search, Java for permissioning -
results iterated over and non-view stripped

• 2.2 - Use Lucene for all queries including perms - sorting still
done in Java

• 2.4 - Use Lucene for all queries, retrieving issues and
displaying - no DB access at all!

• 3.0 - Switch "stats" over to using Lucene via HitCollectors

JIRA: Lucene History



JIRA: Statistics

All from Lucene!



• Text Analysis & Stemming

• “Michael jogs in the park” > “michael, jog, park”

• Proximity Queries

• “cat NEAR dog”

• Wildcard Queries

• “jog*”, “j?g”

• Results returned scored by relevance

Lucene: Full Text Search



Lucene: Generic Data Indexing (GDI)

• Fast retrieval of complex data objects

• Built from one database, multiple databases,
files, anywhere

• Not a single table - just use a database index



Lucene: Generic Data Indexing (GDI)

•Powerful pre-built query tools

• RangeQuery, BooleanQuery etc

“select issues created between
2001 and 2004,
with no components, no versions,
still unresolved that have > 4
votes”



Lucene: Generic Data Indexing (GDI)

• Results returned sorted in custom order

• Sort, SortField



Lucene: Generic Data Indexing (GDI)

• AOP-like result filtering and hit collection

• QueryFilter and HitCollector



Lucene: Generic Data Indexing (GDI)

• Integrated full text search - only if you need it!

• “Free!”

select issues created between 2001 and 2004,
with no components, no versions,
still unresolved that have > 4 votes

and match the query “dash*”



Database V1
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Query: select * from issues where assignee = ‘fred’



Database V2
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Query: select * from issues, fields 
where fields.field = ‘Assignee’ and fields.value = ‘fred’ 

And fields.issue = issues.issue



Database V3
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How is Lucene fast?
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How is Lucene fast?
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How is Lucene fast?
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How is Lucene fast?

1001Bill

0102Jane

0013Fred
Fredassignee

Billreporter

Objects Inverted Index

Fredassignee

Janereporter

Billassignee

Fredreporter
0013Bill

1101,2Fred

reporter

assignee

docId: 3

docId: 2

docId: 1

Docs bitset

# of terms < # of docs



• Store Denormalised Data

• Issue object, fields - one single Lucene document

• No record de-duplication needed as per SQL query

• Native Java API

• Useful for things like sorting where a DB can't do it

• Java specific sort algorithm for issue keys

• Version sequencing - v. complex to do in DB

Advantages For Generic Data Indexing



Advantages For Generic Data Indexing

•Constant time & capabilities

• Our apps are cross platform, OS, JDK, database

• Lucene works pretty much the same across all of them unlike SQL

• Local file system access (most commonly) which is faster than DB as no
network time

•Constant index format

• Readable from Java, C, Perl, Ruby etc

•QueryFilters & HitCollectors!



• Call back object for hit collection
• Great for statistical operations where content / score

is irrelevant
• JIRA - StatusHitCollector for ‘bucketing’

• Fast because:
• Retrieve only fields you need
• Minimum number of loops

HitCollector



HitCollector



• AOP for query results

• BitSet representing possible matches

• Complex in SQL to do, ends up being done in Java

• Permissioning on top of any search

•Construct once per request

•Results are cached in the filter

QueryFilter



QueryFilter



• JIRA - User driven queries an arbitrary data model
• Plugins index/search their own 'fields’ - future proof!
• QueryFilters for permissions - cached per request
• HitCollectors for all statistics / dashboard

Atlassian: Examples Of Lucene Usage



• Confluence - Full text search of wiki pages

• SearchExtractor allows plugins to add meta data to documents

• Also used to search attachment contents & metadata

• eg image file sizes

• Arbitrary ‘page set’ retrieval

• QueryFilter used extensively for security

Atlassian: Examples Of Lucene Usage



• Bamboo - Build telemetry statistics via Lucene

• Fast over millions of rows - data on every test/suite/build run, ever.

• Use Lucene to aggregate data into useful statistics

• HitCollectors used extensively for telemetry data

Atlassian: Examples Of Lucene Usage



• One Big Singleton

• Updates require serialization - indexes are write once, read many

• Jira vs Confluence different access/write strategies

• Delete / Update Operations

• Lucene wasn’t built for fast changing data

• Delete operation is just a flag op & Update requires delete / re-add

• Fixed in Lucene 2.1 - http://issues.apache.org/jira/browse/LUCENE-565

• Writing Is Expensive

• Opening/closing reader/writers proportional to index size

Problems For GDI



Problems For GDI

•Timing Of index.optimise()

• Indexes get fragmented - optimise() defrags

• Tricky to time this as v. slow on large indexes

• Eden space strategy can solve this

•Small index for ‘updated’ data, large for ‘old’ data

•Optimize large index rarely, small frequently - like GC.

•MultiIndexSearcher allows search on multiple indexes like one



Problems For GDI

•Non Transactional

• DB can have data that index misses, or vice versa

• Compass is a solution here - haven’t tested

• Otherwise, architect correct design knowing Lucene

•Optionitis

• Write settings can require a lot of knowledge and tuning

• eg MAX_MERGE_DOCS

•Local storage - can be a problem in a cluster

• See my other presentation for clustering strategies!



• JIRA
• Synchronous indexing > tricky locking problems at scale
• More updates than creates > heavier index load
•Fixed with Lucene 2.1!

• Slower updates, statistics always correct

• Confluence

• Asynchronous indexing

• Updates are queued, flushed every minute

• Clusterable and faster ‘net’ time for user

• ‘Recent Updates’, ‘Search’ up to 1 min inaccurate

GDI Lucene Usage Models



• Use derived data only, so can be recreated at will

• Store -1 for null because nature of fields

• Can't query Lucene for ‘lack of a field’ - ie “No Component”

• Keep open a single searcher and 'flip it' after writing

• ThreadLocals are valuable in web apps

• Use for Searchers, BooleanQueries and QueryFilters that are expensive to create per
search but don’t change per request (10s of queries per request)

• Understand Lucene to adjust your usage to your app

• Index dates to highest granularity possible, prevent term explosion

• Remember Lucene storage? YYMMDD vs YYMMDDHHmmSSSS

Tips



Links

Luke - useful tool to examine indexes
• http://www.getopt.org/luke

Lucene In Action - awesome book
• http://www.lucenebook.com

Compass - Lucene abstraction framework
• http://www.opensymphony.com/compass



Q & A

P.S. Java guru? Atlassian needs engineers!

- Sydney or San Francisco.

http://www.atlassian.com/about/jobs

Email me: mike@atlassian.com


