Atlassian Intelligence — funkcja opracowana z myślą o transparentności
Nasze bezkompromisowe zaangażowanie w otwartą komunikację, odpowiedzialność i pomaganie zespołom w odpowiedzialnym korzystaniu z AI.
Atlassian Intelligence opracowano, aby zapewnić dynamiczną współpracę w zespołach i przyspieszyć realizację zadań. Zrozumienie sposobu działania Atlassian Intelligence, tak samo jak poznanie najlepszych metod współpracy w zespole, pomoże zespołom efektywniej korzystać z dostępnych możliwości. Na tej stronie wyjaśnimy, jak działają nasze produkty i funkcje oparte na SI, jakie są ich możliwości i ograniczenia, oraz jak wpływają na użytkowanie naszych produktów. Wierzymy, że dzięki informacjom dostępnym na tej stronie w pełni wykorzystasz nasze produkty i usprawnisz pracę zespołową. Aby dowiedzieć się więcej o naszym zaangażowaniu w odpowiedzialne budowanie technologii, odwiedź stronę poświęconą Zasadom dotyczącym odpowiedzialnej technologii.
Grupowanie alertów
Grupowanie alertów przez Atlassian Intelligence jest obsługiwane przez duże modele językowe opracowane przez OpenAI i inne modele uczenia maszynowego. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele uczenia maszynowego do analizowania i generowania grup alertów oraz przedstawiania powiązanych sugestii (wcześniejsze grupy alertów i wcześniejsze osoby reagujące na alerty) w naszych produktach w oparciu o podobieństwo zawartości alertów lub użytych tagów. Następnie Atlassian Intelligence wykorzystuje duże modele językowe do analizowania i generowania opisów i treści w języku naturalnym dla tych grup w naszych produktach. Te duże modele językowe generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Grupowanie alertów wykorzystuje Atlassian Intelligence do rozpoznawania i grupowania podobnych alertów. Pomaga również rozpoznawać i rekomendować wcześniejsze podobne grupy alertów i wcześniejsze osoby reagujące na alerty (lub zespoły osób reagujących) w oparciu o semantyczne podobieństwo użytych treści alertów lub tagów. Jeśli chcesz eskalować grupę alertów do incydentu, grupowanie alertów spowoduje również wstępne wypełnienie wszystkich informacji kontekstowych, które możesz przeglądać w ramach procesu tworzenia incydentu. Naszym zdaniem grupowanie alertów najlepiej sprawdza się w scenariuszach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w grupowaniu alertów, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z kolei grupy alertów, które wyświetlasz, mogą nie odzwierciedlać dokładnie semantycznego podobieństwa ich tagów. Z naszych doświadczeń wynika, że grupowanie alertów jest mniej użyteczne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Warto też zadbać, aby zespół stosował spójne praktyki dotyczące używania tagów alertów. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki grupowanie alertów wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Przetwarzamy dane alertów, aby przeszkolić wersję modelu uczenia maszynowego w celu rozpoznawania wzorców specyficznych dla Twoich alertów. Ta wersja służy tylko do obsługi Twojego środowiska:
Podczas grupowania alertów wobec Twoich danych stosowane są wymienione poniżej środki:
|
Odpowiedzi Atlassian Intelligence w Jira Service Management
Odpowiedzi Atlassian Intelligence opierają się na dużych modelach językowych opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Funkcja odpowiedzi Atlassian Intelligence łączy się z wirtualnym agentem obsługi w Jira Service Management. Wykorzystuje generatywną sztuczną inteligencję, aby przeszukiwać powiązane przestrzenie bazy wiedzy i odpowiadać na pytania klientów. Naszym zdaniem odpowiedzi Atlassian Intelligence najlepiej sprawdzają się w sytuacjach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w odpowiedziach Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że odpowiedzi Atlassian Intelligence są mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki odpowiedzi Atlassian Intelligence w Jira Service Management wykorzystują Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
|
Automatyzacja przy użyciu Atlassian Intelligence
Automatyzacja wykorzystująca Atlassian Intelligence jest oparta na modelach GPT opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy danych wprowadzanych w języku naturalnym i generowania dla użytkownika reguły automatyzacji w Jirze i Confluence. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Tworzenie reguł to podstawa codziennej pracy związanej z automatyzacją. Chcemy je dodatkowo ułatwić, dodając Atlassian Intelligence do kreatora reguł automatyzacji w Jirze i Confluence. Teraz możesz łatwo tworzyć reguły automatyzacji, wpisując i opisując, co chcesz zautomatyzować — Atlassian Intelligence zajmie się wszystkim, co najtrudniejsze w tworzeniu reguł. Dowiedz się więcej na temat korzystania z narzędzia Atlassian Intelligence w Jirze i Confluence. Naszym zdaniem wykorzystywanie automatyzacji przy użyciu Atlassian Intelligence w przypadku Jiry i Confluence sprawdza się najlepiej w sytuacjach, gdy nie wiesz, jak zacząć, lub chcesz przyspieszyć proces tworzenia reguł. Nie wiesz, jak najlepiej stworzyć regułę automatyzacji?Reguły automatyzacji są tworzone przez kombinację różnych typów komponentów: wyzwalaczy, czynności, warunków i gałęzi. Wyobraź sobie, że komponenty to podstawowe części składowe reguły. Aby utworzenie reguły za pomocą Atlassian Intelligence się powiodło, musi ona zawierać przynajmniej wyzwalacz i czynność. Przykład: W Jirze: Co poniedziałek wyszukuj wszystkie zadania z terminem przypadającym w ciągu kolejnych 7 dni i wysyłaj przypisanej osobie wiadomość e-mail z przypomnieniem. Kiedy zgłoszenie przejdzie do testowania, przypisz je Janowi Kowalskiemu. W Confluence:
Ponadto aby tworzenie reguły powiodło się, wszystkie jej komponenty muszą być obsługiwane przez automatyzację przy użyciu Atlassian Intelligence. Oznacza to, że wszelkie wyzwalacze, czynności, warunki lub gałęzie w regule muszą być zgodne z automatyzacją w Jirze i/lub Confluence. |
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do automatyzacji przy użyciu Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że automatyzacja przy użyciu Atlassian Intelligence jest mniej przydatna w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Automatyzacja przy użyciu Atlassian Intelligence działa tylko z istniejącym zestawem dostępnych komponentów automatyzacji w Jirze i Confluence. Warto też pamiętać, aby polecenia dla Atlassian Intelligence formułować jak najkonkretniej, jak opisano powyżej. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki automatyzacja za pomocą Atlassian Intelligence wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane w kontekście użycia Atlassian Intelligence do automatyzacji Confluence:
OpenAI jest podwykonawcą przetwarzania znajdującym się na naszej liście podwykonawców przetwarzania. Nie wykorzystuje Twoich danych wejściowych ani wyjściowych w żadnym celu niezwiązanym z przetwarzaniem żądania. Ta funkcja działa zgodnie z uprawnieniami w instancji. Przykładowo jeśli nie masz dostępu do określonego projektu lub strony, otrzymana odpowiedź nie będzie zawierać sugerowanej treści z tej strony. Jeśli nie chcesz, aby Twoje treści były dostępne w odpowiedziach dla innych użytkowników w Twojej instancji, uzgodnij odpowiednie ustawienia uprawnień z administratorem organizacji. |
Analiza wykresów
Analiza wykresów opiera się na dużych modelach językowych opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Analizy wykresów wykorzystują funkcję Atlassian Intelligence, aby pomóc użytkownikom w zrozumieniu danych na dowolnym wykresie w Atlassian Analytics. Na podstawie tytułu pulpitu, tytułu wykresu i danych wykresu (w tym nagłówków kolumn i wartości wierszy) funkcja generuje podsumowanie tego wykresu i jego danych w języku naturalnym. Podejmie też próbę rozpoznania wszelkich trendów lub anomalii, aby zapewnić Ci określone informacje na temat wykresu. Naszym zdaniem chart insights najlepiej sprawdza się w scenariuszach, w których:
Wykresy słupkowe, wykresy liniowe i wykresy słupkowo-liniowe sprawdzają się najlepiej w przypadku tej funkcji funkcją, ponieważ zazwyczaj zawierają trendy, daty i wiele wierszy danych. |
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w chart insights, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że chart insights jest mniej użyteczne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki chart insights wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na tej stronie Przetwarzamy:
Chart insights stosuje następujące środki w stosunku do Twoich danych:
|
Krótkie podsumowanie Confluence
Podsumowywanie stron i blogów za pomocą Atlassian Intelligence opiera się na modelach LLM opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Oszczędzaj czas i uzyskuj szczegóły potrzebne do szybszego wykonywania pracy, generując krótkie podsumowania stron lub blogów Confluence za pomocą Atlassian Intelligence. Dowiedz się więcej na temat korzystania z narzędzia Atlassian Intelligence w Confluence. Naszym zdaniem podsumowywanie stron i blogów za pomocą Atlassian Intelligence najlepiej sprawdza się wówczas, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do podsumowywania stron i blogów za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Na przykład otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Chociaż nadal pracujemy nad lepszą obsługą makr i tabel oraz rozszerzamy podsumowania, odkryliśmy, że podsumowywanie stron i blogów za pomocą Atlassian Intelligence jest mniej przydatne w scenariuszach, w których:
Zachęcamy Cię do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane do automatyzacji Confluence. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, podczas podsumowywania stron i blogów za pomocą Atlassian Intelligence:
|
Definiowanie terminów za pomocą Atlassian Intelligence
Definiowanie terminów za pomocą Atlassian Intelligence w Confluence i Jira jest wspierane przez duże modele językowe opracowane przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania odpowiedzi w języku naturalnym w Confluence. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. |
Jedną z najtrudniejszych rzeczy związanych z korzystaniem z treści w Confluence i Jira może być zdobycie kontekstu potrzebnego do zrozumienia tego, co czytasz. Skróty, akronimy, nieznane terminy oraz nazwy specyficzne dla zespołu lub projektu mogą wymagać czasochłonnego wyszukiwania potrzebnych informacji. Funkcja definiowania terminów za pomocą Atlassian Intelligence pozwala uzyskać definicję terminów specyficznych dla danej firmy (np. akronimów, nazw projektów, systemów lub zespołów) na stronie w Confluence lub w opisie zgłoszenia w Jira. Dzięki temu użytkownik otrzymuje potrzebne mu informacje, kiedy ich potrzebuje — a wszystko to pomaga zespołom sprawniej współpracować. Atlassian Intelligence pozwala Ci zaoszczędzić czas, ponieważ definiuj te rzeczy za Ciebie, dzięki czemu nie musisz przerywać lektury. Jeśli napotkasz definicję, którą uważasz za niedokładną, możesz edytować lub dodać nową definicję, a następnie ustawić widoczność dla tej strony lub tego zgłoszenia, całej przestrzeni lub projektu bądź uzyskać dostęp do całej organizacji. Naszym zdaniem definiowanie terminów za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do definiowania odpowiedzi za pomocą Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Ustaliliśmy, że użycie Atlassian Intelligence do definiowania terminów w Confluence jest mniej przydatne w sytuacjach, w których:
Ponadto w Jira zauważyliśmy, że ponieważ definiowanie terminów za pomocą Atlassian Intelligence opiera się na wyszukiwaniu w Confluence, funkcja ta będzie działać w Jira tylko wtedy, gdy masz uprawnienia do wyświetlania instancji Confluence w tej samej witrynie co instancja Jira. Może się również zdarzyć, że definiowanie terminów za pomocą Atlassian Intelligence nie będzie działać zgodnie z oczekiwaniami w przestrzeniach Confluence lub instancjach Jira, które zawierają treści napisane w wielu językach. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas definiowania terminów. Ta sekcja zawiera wiadomości, które stanowią uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, to podczas definiowania terminów za pomocą Atlassian Intelligence stosowane są następujące środki:
|
Generowanie opisów pull requestów za pomocą Atlassian Intelligence
Generowanie opisów pull requestów za pomocą Atlassian Intelligence jest oparte na dużych modelach językowych (LLM) opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego oraz kodu w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Przeczytaj więcej o funkcjonalnościach modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Atlassian Intelligence może pomóc w generowaniu, przekształcaniu i streszczaniu treści podczas pisania opisów lub komentarzy do pull requestów w środowisku przeglądu kodu w Bitbucket Cloud. Korzyści z tych elementów to między innymi:
Naszym zdaniem generowanie opisów pull requestów w Bitbucket Cloud za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do obsługi tej funkcji, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Na przykład otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Odkryliśmy, że generowanie opisów pull requestów w Bitbucket Cloud za pomocą Atlassian Intelligence sprawdza się gorzej w sytuacjach, gdy:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence w Confluence wykorzystuje Twoje dane podczas definiowania terminów. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
W kwestii danych użytkownika, generowanie opisów pull requestów za pomocą Atlassian Intelligence wiąże się z zastosowaniem następujących środków:
|
Generowanie zapytań SQL w Atlassian Analytics
Generowanie zapytań SQL za pomocą Atlassian Intelligence w Atlassian Analytics jest wspierane przez duże modele językowe opracowane przez OpenAI. Są to modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i rozumienia języka naturalnego, a następnie generuje na ich podstawie język SQL w Atlassian Analytics. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Możesz zadań Atlassian Intelligence pytanie w języku naturalnym i przetłumaczyć je na SQL, zamiast pisać własne zapytania SQL od zera. Po zadaniu pytania Atlassian Intelligence wykorzystuje schemat Atlassian Data Lake wybranego źródła danych do wygenerowania zapytania SQL, które może być używane do tworzenia wykresów na pulpitach Atlassian Analytics, a także może pomóc w poznaniu schematu w Data Lake. Naszym zdaniem generowanie zapytań SQL za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
Nie wiesz, jakie pytania zadawać?Oto kilka sugestii:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do generowania zapytań SQL za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że generowanie zapytań SQL za pomocą jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas generowania zapytań SQL. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Podczas generowania zapytań SQL za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Generatywna SI w edytorze
Atlassian Intelligence w edytorach opierają się na dużych modelach językowych opracowanych przez OpenAI. Są to modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Atlassian Intelligence pomaga prowadzić skuteczną komunikację we wszystkich zespołach w organizacji w celu poprawy wydajności oraz usprawnienia podejmowania decyzji i procesów. Naszym zdaniem wykorzystanie Atlassian Intelligence w edytorach najlepiej sprawdza się w następujących scenariuszach:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych przez Atlassian Intelligence w edytorach, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z naszych doświadczeń wynika, że wykorzystanie Atlassian Intelligence w edytorach jest mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane w edytorach. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, to w kontekście używania Atlassian Intelligence w edytorach stosuje się następujące środki:
|
Wyszukiwanie odpowiedzi w Confluence
Wyszukiwanie odpowiedzi w Confluence za pomocą Atlassian Intelligence opiera się na modelach LLM opracowanych przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Bazy wiedzy rosną zbyt szybko, aby użytkownicy mogli za nimi nadążyć. Wyszukiwanie odpowiedzi w Confluence za pomocą Atlassian Intelligence skraca drogę do kluczowych informacji potrzebnych klientom do kontynuowania pracy. Funkcja ta ułatwia znajdowanie potrzebnych informacji. Rozpoznaje ona rodzaje pytań, które możesz zadać koledze z zespołu, i natychmiast na nie odpowiada. Dowiedz się więcej o tym, jak korzystać z Atlassian Intelligence w celu wyszukiwania odpowiedzi w Confluence. Naszym zdaniem wyszukiwanie odpowiedzi w Confluence za pomocą Atlassian Intelligence działa najlepiej, gdy witryna Confluence jest pełna szczegółowych, kompletnych i aktualnych treści. Ta funkcja nie generuje nowych treści, ale przeszukuje strony i blogi Confluence (z poszanowaniem ograniczeń), aby znaleźć odpowiedź na Twoje pytanie. Atlassian Intelligence generuje odpowiedzi wyłącznie na podstawie tego, co znajduje się w Confluence i do czego masz dostęp. Nie wiesz, jakie pytania zadawać?Oto kilka sugestii:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas wyszukiwania odpowiedzi w Confluence. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Podczas wyszukiwania odpowiedzi w Confluence za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Wyszukiwanie zgłoszeń w Jira
Wyszukiwanie zgłoszeń za pomocą Atlassian Intelligence w Jira jest obsługiwane przez duże modele językowe opracowane przez OpenAI. Modele te obejmują opisane tutaj modele OpenAI, dopracowane przez Atlassian przy użyciu wygenerowanych danych syntetycznych. Atlassian Intelligence wykorzystuje te modele do analizy i zrozumienia języka naturalnego, a następnie przekłada go na język JQL (Jira Query Language) w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o możliwościach modeli OpenAI i dopracowywaniu przez OpenAI. Możesz również przeczytać więcej na temat tego podejścia w artykułach na temat badań OpenAI. |
Atlassian Intelligence pozwala teraz na interakcję w potocznym języku — bez konieczności formułowania złożonych zapytań. Atlassian Intelligence przekłada Twoją podpowiedź na zapytanie w JQL, które szybko pomaga w wyszukaniu konkretnych zgłoszeń. Naszym zdaniem wyszukiwanie zgłoszeń za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do wyszukiwania zgłoszeń za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Otrzymane odpowiedzi mogą na przykład nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z naszych doświadczeń wynika, że wyszukiwanie zgłoszeń za pomocą Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Warto też pamiętać, aby polecenia dla Atlassian Intelligence formułować jak najkonkretniej. Podaj dokładnie te pola i wartości, których szukasz. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas wyszukiwania zgłoszeń. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, to podczas wyszukiwania zgłoszeń za pomocą Atlassian Intelligence stosowane są następujące środki:
|
Sugeruj typy wniosku w Jira Service Management
Sugerowanie typów wniosków za pomocą Atlassian Intelligence jest obsługiwane przez duże modele językowe opracowane przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy danych wprowadzanych w języku naturalnym i generowania rekomendacji dotyczących nazw i opisów typów wniosków w ramach usługi Jira Service Management. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Nie trać czasu na zastanawianie się, jakie typy wniosków musisz utworzyć dla swojego projektu, a zamiast tego korzystaj z sugestii Atlassian Intelligence. Wystarczy, że opiszesz swoją pracę i to, czym zazwyczaj zarządza Twój zespół, aby zobaczyć, jakie typy wniosków możesz utworzyć. Wybierz jedną z sugestii wygenerowanych przez Atlassian Intelligence, aby utworzyć typ wniosku. Dowiedz się więcej o tym, jak używać Atlassian Intelligence w celu sugerowania typów wniosków. Naszym zdaniem korzystanie z Atlassian Intelligence w celu sugerowania typów wniosków najlepiej sprawdza się w sytuacjach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do sugerowania typów wniosków za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Ustaliliśmy, że użycie Atlassian Intelligence do sugerowania typów wniosków jest mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane w celu sugerowania typów wniosków. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, to w kontekście używania Atlassian Intelligence w celu sugerowania typów wniosków stosuje się następujące środki.
|
Podsumowanie szczegółów zgłoszenia w Jira Service Management
Podsumowanie szczegółów zgłoszenia za pomocą Atlassian Intelligence jest wspierane przez duże modele językowe opracowane przez OpenAI. Są to modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Zamiast czytać długie opisy i liczne komentarze na temat zgłoszenia Jira Service Management możesz użyć Atlassian Intelligence w celu szybkiego wygenerowania podsumowania tych informacji. Dzięki temu agenci mogą szybko zapoznać się z kontekstem zgłoszenia i wszelkimi postępami, a tym samym szybko podejmować działania i udzielać pomocy. Naszym zdaniem podsumowanie szczegółów zgłoszenia za pomocą Atlassian Intelligence najlepiej sprawdza się w następujących przypadkach:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do podsumowywania szczegółów zgłoszenia za pomocą Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że podsumowanie szczegółów zgłoszenia przy użyciu Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas podsumowywania szczegółów zgłoszenia. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Podczas podsumowywania szczegółów zgłoszenia za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Pisanie niestandardowych wzorów za pomocą Atlassian Intelligence
Zapisywanie niestandardowych wzorów za pomocą Atlassian Intelligence jest obsługiwane przez duże modele językowe opracowane przez OpenAI. Są wśród nich modele OpenAI opisane tutaj. Atlassian Intelligence wykorzystuje te modele do analizy języka naturalnego, a następnie tłumaczy go na SQLite w Atlassian Analytics. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
Zamiast pisać własne wyrażenia SQLite od podstaw, zapytaj Atlassian Intelligence lub opisz, w jaki sposób chcesz przekształcić dane w tabeli wyników, a narzędzie przełoży to na wyrażenie SQLite używane do niestandardowych wzorów. Gdy zadajesz pytanie, Atlassian Intelligence wykorzystuje dane z tabeli wyników w poprzednim kroku Visual SQL do wygenerowania wyrażenia SQLite, które stosuje obliczenia lub operacje do tych danych na wykresie. Może to również pomóc w poznaniu funkcji SQLite i ich składni. Zapisywanie niestandardowych wzorów przy użyciu Atlassian Intelligence najlepiej sprawdza się w scenariuszach, w których:
|
Podczas korzystania z niestandardowych formuł pamiętaj, że modele używane w Atlassian Intelligence mogą czasami być niedokładnie, niekompletnie lub niewiarygodnie. Otrzymane odpowiedzi mogą na przykład nie odzwierciedlać dokładnie treści, na których zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że zapisywanie niestandardowych formuł za pomocą Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Rozumiemy, że możesz mieć pytania dotyczące sposobu wykorzystania danych podczas zapisywania niestandardowych formuł przy użyciu Atlassian Intelligence. Ta sekcja stanowi uzupełnienie informacji dostępnych w naszym Centrum zaufania. Przetwarzamy:
Jeśli chodzi o Twoje dane, to podczas zapisywania niestandardowych formuł za pomocą Atlassian Intelligence stosowane są następujące środki: Twoje podpowiedzi (dane wejściowe) i odpowiedzi (dane wyjściowe):
OpenAI jest podwykonawcą przetwarzania znajdującym się na naszej liście podwykonawców przetwarzania. Nie wykorzystuje Twoich danych wejściowych ani wyjściowych w żadnym celu niezwiązanym z przetwarzaniem wniosku. |
Dowiedz się więcej o Atlassian Intelligence
Dowiedz się więcej o korzystaniu z Atlassian Intelligence
Dowiedz się, jak korzystać z Atlassian Intelligence do wyszukiwania odpowiedzi w Confluence
Atlassian Intelligence i Rovo opracowano z myślą o transparentności
Nasze bezkompromisowe zaangażowanie w otwartą komunikację, odpowiedzialność i pomaganie zespołom w odpowiedzialnym korzystaniu z AI.
Rovo
Wybierz funkcję Rovo poniżej, aby uzyskać przejrzyste informacje na temat przypadków użycia i wykorzystania danych.
Przyspiesz pracę dzięki SI
Wybierz funkcję Atlassian Intelligence, aby uzyskać przejrzyste informacje na temat przypadków użycia i wykorzystania danych.
- Automatyzacja
- AI related resources
- AI suggestions
- Automation
- Grupowanie alertów
- Krótkie podsumowanie Confluence
- Definiowanie terminów
- Generatywna SI w edytorze
- Issue reformatter
- Podsumowywanie szczegółów zgłoszenia
- Podsumowywanie inteligentnych łączy
- Odpowiedzi AI
- Whiteboards AI summary
- Zapisywanie niestandardowych wzorów za pomocą AI
- Automatyzacja
- AI related resources
- AI suggestions
- Automation
- Grupowanie alertów
- Krótkie podsumowanie Confluence
- Definiowanie terminów
- Generatywna SI w edytorze
- Issue reformatter
- Podsumowywanie szczegółów zgłoszenia
- Podsumowywanie inteligentnych łączy
- Odpowiedzi AI
- Whiteboards AI summary
- Zapisywanie niestandardowych wzorów za pomocą AI
Automatyzacja przy użyciu Atlassian Intelligence
Automation using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy danych wprowadzanych w języku naturalnym i generowania dla użytkownika reguły automatyzacji w Jirze i Confluence. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Tworzenie reguł to podstawa codziennej pracy związanej z automatyzacją. Chcemy je dodatkowo ułatwić, dodając Atlassian Intelligence do kreatora reguł automatyzacji w Jirze i Confluence. Teraz możesz łatwo tworzyć reguły automatyzacji, wpisując i opisując, co chcesz zautomatyzować — Atlassian Intelligence zajmie się wszystkim, co najtrudniejsze w tworzeniu reguł. Dowiedz się więcej na temat korzystania z narzędzia Atlassian Intelligence w Jirze i Confluence. Naszym zdaniem wykorzystywanie automatyzacji przy użyciu Atlassian Intelligence w przypadku Jiry i Confluence sprawdza się najlepiej w sytuacjach, gdy nie wiesz, jak zacząć, lub chcesz przyspieszyć proces tworzenia reguł. |
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do automatyzacji przy użyciu Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że automatyzacja przy użyciu Atlassian Intelligence jest mniej przydatna w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Automatyzacja przy użyciu Atlassian Intelligence działa tylko z istniejącym zestawem dostępnych komponentów automatyzacji w Jirze i Confluence. Warto też pamiętać, aby polecenia dla Atlassian Intelligence formułować jak najkonkretniej, jak opisano powyżej. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki automatyzacja za pomocą Atlassian Intelligence wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane w kontekście użycia Atlassian Intelligence do automatyzacji Confluence:
All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request. Ta funkcja działa zgodnie z uprawnieniami w instancji. Przykładowo jeśli nie masz dostępu do określonego projektu lub strony, otrzymana odpowiedź nie będzie zawierać sugerowanej treści z tej strony. Jeśli nie chcesz, aby Twoje treści były dostępne w odpowiedziach dla innych użytkowników w Twojej instancji, uzgodnij odpowiednie ustawienia uprawnień z administratorem organizacji. |
AI related resources is powered by large language models developed by OpenAI, as well as a combination of open-source large language models (including the Llama series and Phi series) and other machine learning models. These large language models include OpenAI’s GPT series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products, and to provide relevant responses from Atlassian and connected third-party products. These large language models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on. Read more about the capabilities of OpenAI’s models or about this approach in OpenAI's research papers. For more information on open-source language models, see information on the Llama series and the Phi series. |
Atlassian Intelligence enables your users to speed up the process of resolving incidents by suggesting a list of resources that they can refer to, across your linked knowledge base spaces and articles, Jira issues, and (if you are a Rovo customer) any third-party products you have integrated through Rovo. Read more about Rovo and third party tools. We believe that AI related resources work best in scenarios where:
|
Remember that because of the way that the models used to power AI related resources work, these models can sometimes behave in ways that are inaccurate, incomplete, or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on or include content that sounds reasonable but is false or incomplete. We’ve found that AI related resources is less useful in scenarios where:
For this reason, we encourage you to consider situations where you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others. You might also want to think about the following:
|
We understand you may have questions about how AI related resources uses your data. This section supplements the information available on our FAQ page. We process:
When it comes to your data, AI related resources applies the following measures:
|
AI suggestions in Jira Service Management is powered by large language models developed by OpenAI, and other machine learning models. These large language models include OpenAI’s GPT series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products. These large language models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on. Read more about the capabilities of OpenAI’s models. |
With AI suggestions in Jira Service Management, your team can quickly get up to speed by gathering important context about your service requests and incidents at a glance. Atlassian Intelligence helps your team to:
AI suggestions in Jira Service Management can also recommend that agents escalate a request or incident when the applicable SLA is about to be breached. In the case of service requests, this feature may also suggest that agents escalate that request where the models used to power these suggestions identify, based on the text of the reporter’s comments, a sense of urgency or anger with that request. We believe that AI suggestions in Jira Service Management work best in scenarios where:
|
It’s important to remember that because of the way that the models used to power AI suggestions in Jira Service Management work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on or include content that sounds reasonable but is false or incomplete. We’ve found that AI suggestions in Jira Service Management are less useful in scenarios where:
For this reason, we encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others. You might also want to think about:
|
We understand you may have questions about how AI suggestions in Jira Service Management uses your data. This section supplements the information available on our Trust Center. We process:
When it comes to your data, AI suggestions apply the following measures.
|
Automation using Atlassian Intelligence is powered by large language models developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include OpenAI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence uses these models to analyze natural language input and generate an automation rule for you within Jira and Confluence. These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated by predicting the most probable next word or text, based on the data that they have been trained on. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Creating automation rules is at the core of the everyday automation experience, and we want to make this even easier for you by adding Atlassian Intelligence to the automation rule builder in Jira and Confluence. Now, you can easily create automation rules by simply typing in and describing what you wish to automate, and let Atlassian Intelligence handle all the heavy lifting of creating the rule for you. Find out more about Automation using Atlassian Intelligence for Jira and for Confluence. We believe that Automation using Atlassian Intelligence for Jira and Confluence works best in scenarios when you are not sure how to get started or want to accelerate the rule creation process. Not sure how best to create an automation rule?Automation rules are created by a combination of different types of components: triggers, actions, conditions, and branches. Think of components as the building blocks of a rule. To successfully create a rule with Atlassian Intelligence, your rule must at least contain both a trigger and an action. For example: In Jira: Every Monday, find all the tasks with a due date in the next 7 days, and send the assignee a reminder email. When a ticket moves to Testing, assign the ticket to John Smith. In Confluence:
In addition, for a rule to be successfully created, all its components must be supported by Automation using Atlassian Intelligence. This means that any triggers, actions, conditions, or branches in your rule must be compatible with Automation in Jira and/or Confluence. |
It’s important to remember that because of the way that the models used to power Automation using Atlassian Intelligence work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on, or include content that sounds reasonable but is false or incomplete. We’ve found that Automation using Atlassian Intelligence is less useful in scenarios where:
For this reason, we encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others. Automation using Atlassian Intelligence will only work with the existing set of available automation components in Jira and Confluence. You might also want to think about being as specific as possible in what you ask Atlassian Intelligence to do, as described above. |
We understand you may have questions about how Automation using Atlassian Intelligence uses your data. This section supplements the information available on our FAQ page. We process:
When it comes to your data, using Atlassian Intelligence for Confluence automation applies the following measures:
All third-party LLM providers are subprocessors and listed as so on our Subprocessors page. They do not use your inputs and outputs for any purpose besides processing your request. This feature follows the permissions in your instance. For example, if you do not have access to a specific project or page, you will not be suggested content from those assets in the response you receive. If you do not want your content to be available in responses to other users in your instance, work with your org admin to ensure your permissions are set appropriately. |
Grupowanie alertów
Alert grouping by Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele uczenia maszynowego do analizowania i generowania grup alertów oraz przedstawiania powiązanych sugestii (wcześniejsze grupy alertów i wcześniejsze osoby reagujące na alerty) w naszych produktach w oparciu o podobieństwo zawartości alertów lub użytych tagów. Następnie Atlassian Intelligence wykorzystuje duże modele językowe do analizowania i generowania opisów i treści w języku naturalnym dla tych grup w naszych produktach. Te duże modele językowe generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Grupowanie alertów wykorzystuje Atlassian Intelligence do rozpoznawania i grupowania podobnych alertów. Pomaga również rozpoznawać i rekomendować wcześniejsze podobne grupy alertów i wcześniejsze osoby reagujące na alerty (lub zespoły osób reagujących) w oparciu o semantyczne podobieństwo użytych treści alertów lub tagów. Jeśli chcesz eskalować grupę alertów do incydentu, grupowanie alertów spowoduje również wstępne wypełnienie wszystkich informacji kontekstowych, które możesz przeglądać w ramach procesu tworzenia incydentu. Naszym zdaniem grupowanie alertów najlepiej sprawdza się w scenariuszach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w grupowaniu alertów, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z kolei grupy alertów, które wyświetlasz, mogą nie odzwierciedlać dokładnie semantycznego podobieństwa ich tagów. Z naszych doświadczeń wynika, że grupowanie alertów jest mniej użyteczne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Warto też zadbać, aby zespół stosował spójne praktyki dotyczące używania tagów alertów. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki grupowanie alertów wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Przetwarzamy dane alertów, aby przeszkolić wersję modelu uczenia maszynowego w celu rozpoznawania wzorców specyficznych dla Twoich alertów. Ta wersja służy tylko do obsługi Twojego środowiska:
Podczas grupowania alertów wobec Twoich danych stosowane są wymienione poniżej środki:
|
Summarize pages and blogs using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Oszczędzaj czas i uzyskuj szczegóły potrzebne do szybszego wykonywania pracy, generując krótkie podsumowania stron lub blogów Confluence za pomocą Atlassian Intelligence. Dowiedz się więcej na temat korzystania z narzędzia Atlassian Intelligence w Confluence. Naszym zdaniem podsumowywanie stron i blogów za pomocą Atlassian Intelligence najlepiej sprawdza się wówczas, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do podsumowywania stron i blogów za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Na przykład otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Chociaż nadal pracujemy nad lepszą obsługą makr i tabel oraz rozszerzamy podsumowania, odkryliśmy, że podsumowywanie stron i blogów za pomocą Atlassian Intelligence jest mniej przydatne w scenariuszach, w których:
Zachęcamy Cię do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane do automatyzacji Confluence. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, podczas podsumowywania stron i blogów za pomocą Atlassian Intelligence:
|
Definiowanie terminów za pomocą Atlassian Intelligence
Defining terms using Atlassian Intelligence in Confluence and Jira is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania odpowiedzi w języku naturalnym w Confluence. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Jedną z najtrudniejszych rzeczy związanych z korzystaniem z treści w Confluence i Jira może być zdobycie kontekstu potrzebnego do zrozumienia tego, co czytasz. Skróty, akronimy, nieznane terminy oraz nazwy specyficzne dla zespołu lub projektu mogą wymagać czasochłonnego wyszukiwania potrzebnych informacji. Funkcja definiowania terminów za pomocą Atlassian Intelligence pozwala uzyskać definicję terminów specyficznych dla danej firmy (np. akronimów, nazw projektów, systemów lub zespołów) na stronie w Confluence lub w opisie zgłoszenia w Jira. Dzięki temu użytkownik otrzymuje potrzebne mu informacje, kiedy ich potrzebuje — a wszystko to pomaga zespołom sprawniej współpracować. Atlassian Intelligence pozwala Ci zaoszczędzić czas, ponieważ definiuj te rzeczy za Ciebie, dzięki czemu nie musisz przerywać lektury. Jeśli napotkasz definicję, którą uważasz za niedokładną, możesz edytować lub dodać nową definicję, a następnie ustawić widoczność dla tej strony lub tego zgłoszenia, całej przestrzeni lub projektu bądź uzyskać dostęp do całej organizacji. Naszym zdaniem definiowanie terminów za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do definiowania odpowiedzi za pomocą Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Ustaliliśmy, że użycie Atlassian Intelligence do definiowania terminów w Confluence jest mniej przydatne w sytuacjach, w których:
Ponadto w Jira zauważyliśmy, że ponieważ definiowanie terminów za pomocą Atlassian Intelligence opiera się na wyszukiwaniu w Confluence, funkcja ta będzie działać w Jira tylko wtedy, gdy masz uprawnienia do wyświetlania instancji Confluence w tej samej witrynie co instancja Jira. Może się również zdarzyć, że definiowanie terminów za pomocą Atlassian Intelligence nie będzie działać zgodnie z oczekiwaniami w przestrzeniach Confluence lub instancjach Jira, które zawierają treści napisane w wielu językach. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas definiowania terminów. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, to podczas definiowania terminów za pomocą Atlassian Intelligence stosowane są następujące środki:
|
Generatywna SI w edytorze
Atlassian Intelligence in editing experiences is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Atlassian Intelligence pomaga prowadzić skuteczną komunikację we wszystkich zespołach w organizacji w celu poprawy wydajności oraz usprawnienia podejmowania decyzji i procesów. Naszym zdaniem wykorzystanie Atlassian Intelligence w edytorach najlepiej sprawdza się w następujących scenariuszach:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych przez Atlassian Intelligence w edytorach, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z naszych doświadczeń wynika, że wykorzystanie Atlassian Intelligence w edytorach jest mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane w edytorach. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, to w kontekście używania Atlassian Intelligence w edytorach stosuje się następujące środki:
|
Issue reformatter is powered by large language models developed by OpenAI, including OpenAI’s GPT series of models. Atlassian Intelligence uses this model to analyze and generate natural language within Jira. These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on. Read more about the capabilities of OpenAI’s models. |
Issue reformatter helps improve the clarity of your Jira issue descriptions by reformatting them using a template developed by Atlassian. This template covers the types of information that we usually expect to see in a Jira issue description, such as a user story, context for the work, and acceptance criteria. We believe issue reformatter works best in scenarios where your issue descriptions already contain useful information (such as acceptance criteria or links to sources) but that information is not formatted using a clear or consistent structure. |
It’s important to remember that, because of the way they work, the models that power issue reformatter can sometimes behave in ways that are inaccurate, incomplete or unreliable. For example, your reformatted description might not accurately reflect the content that it was based on, or it might include details that sound reasonable but are false or incomplete. We’ve found issue reformatter is less useful in scenarios where:
For this reason, we encourage you to think about the situations when you use Atlassian Intelligence, and always review the quality of the responses you get before sharing them with others. You might also want to think about reviewing and confirming that your issue descriptions include all relevant information before you start using issue reformatter to reformat them. |
We understand you may have questions about how issue reformatter uses your data. This section supplements the information available on our Trust Center. We process:
When it comes to your data, issue reformatter applies the following measures:
|
Podsumowanie szczegółów zgłoszenia w Jira Service Management
Summarize issue details using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Zamiast czytać długie opisy i liczne komentarze na temat zgłoszenia Jira Service Management możesz użyć Atlassian Intelligence w celu szybkiego wygenerowania podsumowania tych informacji. Dzięki temu agenci mogą szybko zapoznać się z kontekstem zgłoszenia i wszelkimi postępami, a tym samym szybko podejmować działania i udzielać pomocy. Naszym zdaniem podsumowanie szczegółów zgłoszenia za pomocą Atlassian Intelligence najlepiej sprawdza się w następujących przypadkach:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do podsumowywania szczegółów zgłoszenia za pomocą Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że podsumowanie szczegółów zgłoszenia przy użyciu Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas podsumowywania szczegółów zgłoszenia. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Podczas podsumowywania szczegółów zgłoszenia za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Generatywna SI w edytorze
Summarize Smart Links with Atlassian Intelligence (AI) is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Po najechaniu kursorem na inteligentne łącze z Jira, Confluence i Dokumentów Google Atlassian Intelligence może pomóc Ci w podsumowaniu treści, co pozwala określić znaczenie i wartość łącza oraz zdecydować o następnym kroku. Zmniejsza to potrzebę opuszczenia bieżącej strony i zmiany kontekstu. Uważamy, że podsumowywanie inteligentnych łączy za pomocą SI działa najlepiej w scenariuszach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych przy podsumowywaniu inteligentnych łączy dzięki SI, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Otrzymane podsumowania mogą na przykład nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Odkryliśmy, że podsumowywanie inteligentnych łączy za pomocą SI jest mniej przydatne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas podsumowywania szczegółów zgłoszenia. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, podczas podsumowywania inteligentnych łączy za pomocą SI stosuje się wymienione poniżej środki.
|
Odpowiedzi Atlassian Intelligence w Jira Service Management
Atlassian Intelligence answers is powered by large language models developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Funkcja odpowiedzi Atlassian Intelligence łączy się z wirtualnym agentem obsługi w Jira Service Management. Wykorzystuje generatywną sztuczną inteligencję, aby przeszukiwać powiązane przestrzenie bazy wiedzy i odpowiadać na pytania klientów. Naszym zdaniem odpowiedzi Atlassian Intelligence najlepiej sprawdzają się w sytuacjach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w odpowiedziach Atlassian Intelligence, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że odpowiedzi Atlassian Intelligence są mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki odpowiedzi Atlassian Intelligence w Jira Service Management wykorzystują Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
|
Summarize a Whiteboard is powered by large language models developed by OpenAI. These large language models include OpenAI’s GPT series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products. These models generate responses based on your inputs and are probabilistic in nature. This means that their responses are generated through predicting the most probable next word or text based on the data that they have been trained on. Read more about the capabilities of OpenAI's models. |
Save time and get the details you need to do your work faster by generating a summary of the content on a whiteboard using Atlassian Intelligence. We believe that Summarize a Whiteboard works best in scenarios where you have already created content with a Whiteboard. You can copy or create a page from the summary Atlassian Intelligence generates using the buttons at the bottom of the summary panel. You can also rate the quality of the summary and provide feedback. |
It’s important to remember that because of the way that the models used to power Summarize a Whiteboard work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on, or include content that sounds reasonable but is false or incomplete. While we continue to build better support for macros, tables, and expand in summaries, we’ve found that Summarize a Whiteboard using Atlassian Intelligence is less useful in scenarios where:
We encourage you to think about the situations when you use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others. |
We understand you may have questions about how summarize a Whiteboard uses your data. This section supplements the information available on our FAQ page. We process:
When it comes to your data, summarize a Whiteboard applies the following measures.
|
Krótkie podsumowanie Confluence
Writing custom formulas using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy języka naturalnego, a następnie tłumaczy go na SQLite w Atlassian Analytics. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Zamiast pisać własne wyrażenia SQLite od podstaw, zapytaj Atlassian Intelligence lub opisz, w jaki sposób chcesz przekształcić dane w tabeli wyników, a narzędzie przełoży to na wyrażenie SQLite używane do niestandardowych wzorów. Gdy zadajesz pytanie, Atlassian Intelligence wykorzystuje dane z tabeli wyników w poprzednim kroku Visual SQL do wygenerowania wyrażenia SQLite, które stosuje obliczenia lub operacje do tych danych na wykresie. Może to również pomóc w poznaniu funkcji SQLite i ich składni. Zapisywanie niestandardowych wzorów przy użyciu Atlassian Intelligence najlepiej sprawdza się w scenariuszach, w których:
|
Podczas korzystania z niestandardowych wzorów pamiętaj, że modele używane w Atlassian Intelligence mogą czasami być niedokładnie, niekompletnie lub niewiarygodnie. Otrzymane odpowiedzi mogą na przykład nie odzwierciedlać dokładnie treści, na których zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że zapisywanie niestandardowych wzorów za pomocą Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane do automatyzacji Confluence. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, podczas podsumowywania stron i blogów za pomocą Atlassian Intelligence:
|
Użyj sztucznej inteligencji jako siły napędowej
Wybierz funkcję Atlassian Intelligence, aby uzyskać przejrzyste informacje na temat przypadków użycia i wykorzystania danych.
Create incident with AI using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. These models generate responses based on your input and are probabilistic in nature. This means that their responses are generated by predicting the most probable next word or text based on the data that they've been trained on. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
W przypadku eskalacji jednego lub większej liczby alertów lub grup alertów do incydentu w Jira Service Management funkcja tworzenia incydentów za pomocą SI wykorzystuje Atlassian Intelligence do szybkiego wstępnego wypełnienia wszystkich informacji kontekstowych, które możesz przeglądać w ramach procesu tworzenia incydentu. Dzięki temu użytkownicy mogą szybko zapoznać się z kontekstem incydentu utworzonego na podstawie tych alertów lub grup alertów, a także przejrzeć i potwierdzić wstępnie wypełnione informacje, w tym tytuł, opis i priorytet alertu podczas eskalowania go do incydentu. Uważamy, że tworzenie incydentów za pomocą SI działa najlepiej w scenariuszach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w tworzeniu incydentu za pomocą SI mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Odkryliśmy, że tworzenie incydentów za pomocą SI jest mniej przydatne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Aby uzyskać najbardziej przydatne wyniki, sugerujemy jak najbardziej konkretne formułowanie zapytań do Atlassian Intelligence. Warto też pamiętać, aby polecenia dla Atlassian Intelligence formułować jak najkonkretniej. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki tworzenie incydentu za pomocą SI wykorzystuje Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań Przetwarzamy:
Jeśli chodzi o Twoje dane, podczas tworzenia incydentu za pomocą SI stosuje się wymienione poniżej środki:
|
Create post-incident review
PIR (Post-Incident Review) creation by Atlassian Intelligence is powered by large language models developed by OpenAI. These large language models include OpenAI’s GPT series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products. These models generate responses based on users' inputs and are probabilistic in nature. This means that the responses are generated by predicting the most probable next word or text, based on the data that they’ve been trained on. Przeczytaj więcej o funkcjonalności modeli OpenAI i o tym podejściu w artykułach badawczych OpenAI. |
PIRs are a core part of the incident management process, helping incident responders and managers learn from current incidents and pass along insights to prevent similar incidents in the future. Atlassian Intelligence helps to accelerate the often time-consuming task of compiling a PIR by suggesting a PIR description based on relevant contextual information in your Jira Service Management instance and chat tools like Slack for you to review. We believe that PIR creation using AI works best in scenarios where:
|
It’s important to remember that because of the way that the models used to power PIR creation work, they can sometimes behave in ways that are inaccurate, incomplete, or unreliable. For example, the responses that you receive might not accurately reflect the content that they are based on or include content that might sound reasonable but is false or incomplete. We’ve found that PIR creation using AI is less useful in scenarios where:
For this reason, we encourage you to think about situations where you can use Atlassian Intelligence and review the quality of the responses you receive before sharing them with others. Inne kwestie warte przemyślenia:
|
We understand you may have questions about how create post-incident review using AI uses your data. This section supplements the information available on our FAQ page. Przetwarzamy:
When it comes to your data, PIR creation using AI applies the following measures.
|
Generowanie opisów pull requestów za pomocą Atlassian Intelligence
Generating pull request descriptions with Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego oraz kodu w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Atlassian Intelligence może pomóc w generowaniu, przekształcaniu i streszczaniu treści podczas pisania opisów lub komentarzy do pull requestów w środowisku przeglądu kodu w Bitbucket Cloud. Korzyści z tych elementów to między innymi:
Naszym zdaniem generowanie opisów pull requestów w Bitbucket Cloud za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do obsługi tej funkcji, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Na przykład otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Odkryliśmy, że generowanie opisów pull requestów w Bitbucket Cloud za pomocą Atlassian Intelligence sprawdza się gorzej w sytuacjach, gdy:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence w Confluence wykorzystuje Twoje dane podczas definiowania terminów. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
W kwestii danych użytkownika, generowanie opisów pull requestów za pomocą Atlassian Intelligence wiąże się z zastosowaniem następujących środków:
|
Generowanie zapytań SQL w Atlassian Analytics
Generating SQL queries using Atlassian Intelligence in Atlassian Analytics is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i rozumienia języka naturalnego, a następnie generuje na ich podstawie język SQL w Atlassian Analytics. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Możesz zadań Atlassian Intelligence pytanie w języku naturalnym i przetłumaczyć je na SQL, zamiast pisać własne zapytania SQL od zera. Po zadaniu pytania Atlassian Intelligence wykorzystuje schemat Atlassian Data Lake wybranego źródła danych do wygenerowania zapytania SQL, które może być używane do tworzenia wykresów na pulpitach Atlassian Analytics, a także może pomóc w poznaniu schematu w Data Lake. Naszym zdaniem generowanie zapytań SQL za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
Nie wiesz, jakie pytania zadawać?Oto kilka sugestii:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do generowania zapytań SQL za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że generowanie zapytań SQL za pomocą jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas generowania zapytań SQL. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Podczas generowania zapytań SQL za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Wyszukiwanie odpowiedzi w Confluence
Search answers in Confluence using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Bazy wiedzy rosną zbyt szybko, aby użytkownicy mogli za nimi nadążyć. Wyszukiwanie odpowiedzi w Confluence za pomocą Atlassian Intelligence skraca drogę do kluczowych informacji potrzebnych klientom do kontynuowania pracy. Funkcja ta ułatwia znajdowanie potrzebnych informacji. Rozpoznaje ona rodzaje pytań, które możesz zadać koledze z zespołu, i natychmiast na nie odpowiada. Dowiedz się więcej o tym, jak korzystać z Atlassian Intelligence w celu wyszukiwania odpowiedzi w Confluence. Naszym zdaniem wyszukiwanie odpowiedzi w Confluence za pomocą Atlassian Intelligence działa najlepiej, gdy witryna Confluence jest pełna szczegółowych, kompletnych i aktualnych treści. Ta funkcja nie generuje nowych treści, ale przeszukuje strony i blogi Confluence (z poszanowaniem ograniczeń), aby znaleźć odpowiedź na Twoje pytanie. Atlassian Intelligence generuje odpowiedzi wyłącznie na podstawie tego, co znajduje się w Confluence i do czego masz dostęp. Nie wiesz, jakie pytania zadawać?Oto kilka sugestii:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas wyszukiwania odpowiedzi w Confluence. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Podczas wyszukiwania odpowiedzi w Confluence za pomocą Atlassian Intelligence w odniesieniu do Twoich danych stosowane są następujące środki:
|
Wyszukiwanie zgłoszeń w Jira
Search issues using Atlassian Intelligence in Jira is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i zrozumienia języka naturalnego, a następnie przekłada go na język JQL (Jira Query Language) w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Atlassian Intelligence pozwala teraz na interakcję w potocznym języku — bez konieczności formułowania złożonych zapytań. Atlassian Intelligence przekłada Twoją podpowiedź na zapytanie w JQL, które szybko pomaga w wyszukaniu konkretnych zgłoszeń. Naszym zdaniem wyszukiwanie zgłoszeń za pomocą Atlassian Intelligence najlepiej sprawdza się w sytuacjach, gdy:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do wyszukiwania zgłoszeń za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Otrzymane odpowiedzi mogą na przykład nie odzwierciedlać dokładnie treści, na której zostały oparte, lub zawierać treść, która brzmi rozsądnie, jednak wprowadza w błąd lub nie jest wyczerpująca. Z naszych doświadczeń wynika, że wyszukiwanie zgłoszeń za pomocą Atlassian Intelligence jest mniej przydatne w następujących sytuacjach:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Warto też pamiętać, aby polecenia dla Atlassian Intelligence formułować jak najkonkretniej. Podaj dokładnie te pola i wartości, których szukasz. |
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane podczas wyszukiwania zgłoszeń. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, to podczas wyszukiwania zgłoszeń za pomocą Atlassian Intelligence stosowane są następujące środki:
|
Błyskawiczne gromadzenie analiz na podstawie swoich danych
Wybierz funkcję Atlassian Intelligence, aby uzyskać przejrzyste informacje na temat przypadków użycia i wykorzystania danych.
Analiza wykresów
Chart insights is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy i generowania języka naturalnego w naszych produktach. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których silnik został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Analizy wykresów wykorzystują funkcję Atlassian Intelligence, aby pomóc użytkownikom w zrozumieniu danych na dowolnym wykresie w Atlassian Analytics. Na podstawie tytułu pulpitu, tytułu wykresu i danych wykresu (w tym nagłówków kolumn i wartości wierszy) funkcja generuje podsumowanie tego wykresu i jego danych w języku naturalnym. Podejmie też próbę rozpoznania wszelkich trendów lub anomalii, aby zapewnić Ci określone informacje na temat wykresu. Naszym zdaniem analizy wykresów najlepiej sprawdzają się w scenariuszach, w których:
Wykresy słupkowe, wykresy liniowe i wykresy słupkowo-liniowe sprawdzają się najlepiej w przypadku tej funkcji funkcją, ponieważ zazwyczaj zawierają trendy, daty i wiele wierszy danych. |
Trzeba pamiętać, że ze względu na sposób działania modeli używanych w analizach wykresów, mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Z naszych doświadczeń wynika, że analizy wykresów są mniej użyteczne w scenariuszach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki analizy wykresów wykorzystują Twoje dane. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Podczas analizy wykresów wobec Twoich danych stosowane są wymienione poniżej środki.
|
Sugeruj typy wniosku w Jira Service Management
Suggest request types using Atlassian Intelligence is developed by OpenAI, Google, and Anthropic, as well as a combination of open-source large language models (including the Llama series, Phi series, and Mixtral series) and other machine learning models. These large language models include Open AI's GPT series of models, Google's Gemini series of models, and Anthropic's Claude series of models. Atlassian Intelligence wykorzystuje te modele do analizy danych wprowadzanych w języku naturalnym i generowania rekomendacji dotyczących nazw i opisów typów wniosków w ramach usługi Jira Service Management. Modele te generują odpowiedzi na podstawie danych wejściowych i mają charakter probabilistyczny. Oznacza to, że ich odpowiedzi są generowane przez przewidywanie najbardziej prawdopodobnego następnego słowa lub tekstu na podstawie danych, na których model został przeszkolony. Read more about the capabilities of OpenAI’s models, Google’s models and Anthropic’s models. For more information on open-source language models, see information on the Llama series and the Phi series. |
Nie trać czasu na zastanawianie się, jakie typy wniosków musisz utworzyć dla swojego projektu, a zamiast tego korzystaj z sugestii Atlassian Intelligence. Wystarczy, że opiszesz swoją pracę i to, czym zazwyczaj zarządza Twój zespół, aby zobaczyć, jakie typy wniosków możesz utworzyć. Wybierz jedną z sugestii wygenerowanych przez Atlassian Intelligence, aby utworzyć typ wniosku. Dowiedz się więcej o tym, jak używać Atlassian Intelligence w celu sugerowania typów wniosków. Naszym zdaniem korzystanie z Atlassian Intelligence w celu sugerowania typów wniosków najlepiej sprawdza się w sytuacjach, w których:
|
Trzeba pamiętać, że ze względu na sposób działania modeli używanych do sugerowania typów wniosków za pomocą Atlassian Intelligence mogą one czasami generować niedokładne, niekompletne lub niewiarygodne wyniki. Przykładowo otrzymane odpowiedzi mogą nie odzwierciedlać dokładnie zawartości, na której zostały oparte, lub zawierać treści, które brzmią rozsądnie, jednak wprowadzają w błąd lub nie są wyczerpujące. Ustaliliśmy, że użycie Atlassian Intelligence do sugerowania typów wniosków jest mniej przydatne w sytuacjach, w których:
Dlatego zachęcamy do przemyślenia, w jakich sytuacjach korzystasz z Atlassian Intelligence, a także do sprawdzania jakości uzyskanych odpowiedzi przed udostępnieniem ich innym. Inne kwestie warte przemyślenia:
|
Zdajemy sobie sprawę, że możesz mieć pytania dotyczące sposobu, w jaki Atlassian Intelligence wykorzystuje Twoje dane w celu sugerowania typów wniosków. Ta sekcja stanowi uzupełnienie informacji dostępnych na stronie często zadawanych pytań. Przetwarzamy:
Jeśli chodzi o Twoje dane, to w kontekście używania Atlassian Intelligence w celu sugerowania typów wniosków stosuje się następujące środki.
|
Odniesienia
Na naszej stronie ze statusami produktów Atlassian możesz sprawdzać informacje o statusie produktów aktualizowane w czasie rzeczywistym.
Dowiedz się więcej o Atlassian Intelligence
Dowiedz się, w jaki sposób Atlassian zarządza danymi klientów.