Atlassian Intelligence steht für Transparenz
Unser Engagement für offene Kommunikation, Verantwortungsbewusstsein und Unterstützung von Teams zur verantwortungsvollen KI-Nutzung.
Atlassian Intelligence wurde entwickelt, um Teamarbeit zu beschleunigen. Und so wie mit der Arbeitsweise deines Teams musst du dich auch mit Atlassian Intelligence vertraut machen, um es optimal nutzen zu können. Auf dieser Seite erklären wir, wie unsere KI-gestützten Produkte und Features funktionieren, einschließlich ihrer Möglichkeiten und Einschränkungen und wie sie zur Gestaltung unserer Produkte beitragen. Die Informationen auf dieser Seite sollen dir helfen, den größtmöglichen Nutzen aus unseren Produkten zu gewinnen und deine Teamarbeit zu optimieren. Um mehr über unser Engagement für die verantwortungsvolle Entwicklung von Technologie zu erfahren, sieh dir unsere Prinzipien für verantwortungsvolle Technologie an.
Warnungsgruppierung
Die Warnungsgruppierung von Atlassian Intelligence basiert auf großen Sprachmodellen, die von OpenAI und anderen Modellen für maschinelles Lernen entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle für maschinelles Lernen, um Warnungsgruppen zu analysieren und zu generieren und entsprechende Vorschläge (frühere Warnungsgruppen und Reagierende) innerhalb unserer Produkte zu unterbreiten, die auf der Ähnlichkeit des Warnmeldungsinhalts oder der verwendeten Tags basieren. Atlassian Intelligence verwendet dann große Sprachmodelle, um Beschreibungen und Inhalte in natürlicher Sprache für diese Gruppen in unseren Produkten zu analysieren und zu generieren. Diese großen Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Die Warnungsgruppierung verwendet Atlassian Intelligence, um ähnliche Warnmeldungen zu identifizieren und zu gruppieren. Außerdem unterstützt dich die Funktion, indem sie frühere ähnliche Warnungsgruppen und Reagierende (oder entsprechende Teams) identifiziert und vorschlägt, basierend auf der semantischen Ähnlichkeit des Warnmeldungsinhalts oder der verwendeten Tags. Wenn du die Warnungsgruppe zu einem Vorfall eskalieren möchtest, füllt die Warnungsgruppierung auch alle Kontextinformationen vorab aus. Im Rahmen der Vorfallerstellung kannst du diese dann überprüfen. Die Warnungsgruppierung funktioniert am besten in den folgenden Szenarien:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Die Warnungsgruppen, die dir angezeigt werden, entsprechen möglicherweise nicht genau der semantischen Ähnlichkeit der zugehörigen Tags. Wir haben festgestellt, dass die Warnungsgruppierung in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Außerdem solltest du sicherstellen, dass du und dein Team einheitliche Verfahren bei der Verwendung von Warnungs-Tags befolgen. |
Du fragst dich vielleicht, wie die Warnmeldungsgruppierung deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Wir verarbeiten deine Warnmeldungsdaten, um eine Version des Modells für maschinelles Lernen dafür zu trainieren, spezifische Muster in deinen Warnmeldungen zu erkennen. Diese Version wird nur verwendet, um dein Erlebnis zu verbessern:
In Bezug auf deine Daten wendet die Warnungsgruppierung folgende Maßnahmen an:
|
Atlassian Intelligence-Antworten in Jira Service Management
Atlassian Intelligence-Antworten basieren auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Die Funktion "Atlassian Intelligence-Antworten" kann mit dem virtuellen Service-Agenten in Jira Service Management verbunden werden. Sie nutzt künstliche Intelligenz, um in deinen verknüpften Wissensdatenbanken zu suchen und Kundenfragen zu beantworten. Die Funktion "Atlassian Intelligence-Antworten" funktioniert am besten in folgenden Szenarien:
|
Die Modelle zur Verwendung von Atlassian Intelligence-Antworten können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence-Antworten in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie Atlassian Intelligence-Antworten in Jira Service Management deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
|
Automatisierung mit Atlassian Intelligence
Die Automatisierung mit Atlassian Intelligence basiert auf GPT-Modellen, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um Eingaben in natürlicher Sprache zu analysieren und für dich eine Automatisierungsregel in Jira und Confluence zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Das Erstellen von Automatisierungsregeln steht bei täglichen Automatisierungsanwendungen im Mittelpunkt. Wir haben Atlassian Intelligence zum Automatisierungsregel-Builder in Jira und Confluence hinzugefügt, um diese Aufgabe für dich noch einfacher machen. Du kannst jetzt mühelos Automatisierungsregeln erstellen, indem du einfach eingibst und beschreibst, was du automatisieren möchtest. Die komplexe Erstellung der Regel kannst du dann Atlassian Intelligence überlassen. Erfahre mehr über Automatisierung mit Atlassian Intelligence für Jira und für Confluence. Wir sind der Meinung, dass die Automatisierung mit Atlassian Intelligence für Jira und Confluence am besten in Situationen funktioniert, in denen du dir nicht sicher bist, wie du anfangen sollst, oder wenn du den Prozess der Regelerstellung beschleunigen möchtest. Du bist dir nicht sicher, wie du am besten eine Automatisierungsregel erstellst?Automatisierungsregeln werden aus einer Kombination verschiedener Arten von Komponenten erstellt: Trigger, Aktionen, Bedingungen und Branches. Stell dir Komponenten als die Bausteine einer Regel vor. Um mit Atlassian Intelligence erfolgreich eine Regel zu erstellen, muss diese mindestens einen Trigger und eine Aktion enthalten. Ein Beispiel: In Jira: Suche jeden Montag nach allen Tasks mit einem Fälligkeitsdatum in den nächsten sieben Tagen und sende der zugewiesenen Person eine E-Mail-Erinnerung. Wenn ein Ticket in die Testphase verschoben wird, das Ticket John Smith zuweisen. In Confluence:
Damit eine Regel erfolgreich erstellt werden kann, müssen außerdem alle ihre Komponenten von der Automatisierung mit Atlassian Intelligence unterstützt werden. Das bedeutet, dass alle Trigger, Aktionen, Bedingungen oder Branches in deiner Regel mit der Automatisierung in Jira und/oder Confluence kompatibel sein müssen. |
Bitte beachte, dass die Modelle, die zur Unterstützung der Automatisierung mit Atlassian Intelligence verwendet werden, unter Umständen ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Die Automatisierung mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Die Automatisierung mit Atlassian Intelligence funktioniert nur mit den vorhandenen verfügbaren Automatisierungskomponenten in Jira und Confluence. Denke auch daran, dass du für Atlassian Intelligence möglichst spezifische Aufforderungen formulierst, wie oben beschrieben. |
Du fragst dich vielleicht, wie die Automatisierung mit Atlassian Intelligence deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
Was deine Daten angeht, werden für die Nutzung von Atlassian Intelligence für die Confluence-Automatisierung die folgenden Maßnahmen angewendet:
OpenAI ist ein Unterauftragsverarbeiter aus unserer Liste der Unterauftragsverarbeiter. Das Unternehmen verwendet deine Ein- und Ausgaben ausschließlich für die Bearbeitung deiner Anfrage. Diese Funktion richtet sich nach den Berechtigungen in deiner Instanz. Wenn du zum Beispiel keinen Zugriff auf ein bestimmtes Projekt oder eine bestimmte Seite hast, werden dir in der Antwort, die du erhältst, keine Inhalte aus diesen Ressourcen vorgeschlagen. Wenn du nicht möchtest, dass deine Inhalte in Antworten für andere Nutzer in deiner Instanz verfügbar sind, wende dich an deinen Organisationsadministrator, um die Berechtigungen richtig einzustellen. |
Chart Insights
Chart Insights basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, für ihre Antworten prognostizieren die Modelle anhand der Daten, mit denen sie trainiert wurden, welches Wort oder welcher Text wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Chart Insights nutzt Atlassian Intelligence, um dir schnellere Dateneinblicke in Atlassian-Analytics-Diagrammen zu bieten. Dazu werden der Dashboard-Titel, der Diagrammtitel und die Diagrammdaten (einschließlich Spaltenüberschriften und Zeilenwerte) verwendet, um eine Zusammenfassung des Diagramms und der enthaltenen Daten in natürlicher Sprache zu generieren. Außerdem versucht es, Trends oder Anomalien zu identifizieren, um dir spezifische Einblicke in das Diagramm zu geben. Chart Insights funktioniert am besten in den folgenden Szenarien:
Balkendiagramme, Liniendiagramme und Balken-Linien-Kombinationen funktionieren am besten mit dieser Funktion, da sie in der Regel Trends, Daten und viele Datenzeilen enthalten. |
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass Chart Insights in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie Chart Insights deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen, die auf dieser Seite verfügbar sind. Wir verarbeiten:
Was deine Daten angeht, wendet Chart Insights die folgenden Maßnahmen an.
|
Kurze Zusammenfassung in Confluence
Die Zusammenfassung von Seiten und Blogs mit Atlassian Intelligence wird durch LLM-Modelle unterstützt, die von OpenAI entwickelt wurden. Diese Modelle beinhalten OpenAI-Modelle, die hier beschrieben werden. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Spare Zeit und erhalte genau die Informationen, die du für schnelleres Arbeiten benötigst. Lasse dir hierzu mit Atlassian Intelligence eine kurze Zusammenfassung einer Confluence-Seite oder eines Confluence-Blogs generieren. Weitere Informationen zur Verwendung von Atlassian Intelligence in Confluence Wir sind der Meinung, dass das Zusammenfassen von Seiten und Blogs mit Atlassian Intelligence in den folgenden Situationen am besten funktioniert:
|
Bitte beachte, dass die Funktionsweise der Modelle, die für die Zusammenfassungen von Seiten und Blogs mit Atlassian Intelligence eingesetzt werden, unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen kann. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir arbeiten zwar an einer besseren Unterstützung für Makros und Tabellen und weiten diese auf Zusammenfassungen aus, haben jedoch festgestellt, dass das Zusammenfassen von Seiten und Blogs mit Atlassian Intelligence in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für die Nutzung von Atlassian Intelligence für die Confluence-Automatisierung verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
Was deine Daten angeht, werden für die Zusammenfassung von Seiten und Blogs mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Begriffe mit Atlassian Intelligence definieren
Die Definition von Begriffen mithilfe von Atlassian Intelligence in Confluence und Jira basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in Confluence zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. |
Eine der größten Herausforderungen bei der Nutzung von Inhalten in Confluence und Jira kann darin bestehen, den nötigen Kontext zu finden, um das Gelesene zu verstehen. Abkürzungen, Akronyme, unbekannte Begriffe und team- oder projektspezifische Namen können zu einer langwierigen Suche nach den nötigen Informationen führen. Durch die Definition von Begriffen mithilfe von Atlassian Intelligence werden unternehmensspezifische Begriffe (wie Akronyme, Projekt-, System- oder Teamnamen) auf einer Seite in Confluence oder in einer Vorgangsbeschreibung in Jira definiert. Dadurch erhalten Benutzer jederzeit die von ihnen benötigten Informationen – und deine Teams können besser zusammenarbeiten. Mit Atlassian Intelligence sparst du Zeit durch automatische Definitionen, ohne die gerade geöffnete Seite verlassen zu müssen. Wenn du auf eine Definition stößt, die du für ungenau hältst, kannst du sie bearbeiten oder eine neue Definition hinzufügen. Anschließend kannst du festlegen, ob sie für die jeweilige Seite oder den jeweiligen Vorgang, den gesamten Bereich oder das gesamte Projekt oder für deine gesamte Organisation sichtbar sein soll. Die Definition von Begriffen mithilfe von Atlassian Intelligence in Confluence funktioniert am besten in folgenden Szenarien:
|
Die Modelle, die zur Definition von Begriffen mit Atlassian Intelligence in Confluence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Definition von Begriffen mithilfe von Atlassian Intelligence in Confluence in folgenden Szenarien weniger nützlich ist:
Da die Definition von Begriffen mithilfe von Atlassian Intelligence von der Suche in Confluence abhängt, funktioniert sie in Jira nur, wenn du berechtigt bist, eine Confluence-Instanz auf derselben Site wie deine Jira-Instanz anzusehen. Vielleicht wirst du auch feststellen, dass das Definieren von Begriffen mithilfe von Atlassian Intelligence in bestimmten Confluence-Bereichen oder Jira-Instanzen nicht wie erwartet funktioniert, weil die darin enthaltenen Inhalte in mehreren Sprachen verfasst sind. |
Du fragst dich vielleicht, wie deine Daten für die Definition von Begriffen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen, die in unserem Trust Center verfügbar sind. Wir verarbeiten:
Was deine Daten angeht, werden bei der Definition von Begriffen mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Beschreibungen für Pull-Anfragen mit Atlassian Intelligence generieren
Die Generierung von Pull-Anfragen-Beschreibungen mit Atlassian Intelligence basiert auf Large Language Models (LLM), die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache und Code in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Weitere Informationen: Funktionen von OpenAI-Modellen und OpenAI-Forschungsberichte |
Atlassian Intelligence kann dir helfen, Inhalte zu generieren, zu transformieren und zusammenzufassen, während du im Rahmen der Code-Prüfung von Bitbucket Cloud Beschreibungen für oder Kommentare zu Pull-Anfragen verfasst. Dazu gehört beispielsweise:
Wir sind der Meinung, dass das Generieren von Pull-Anfragen-Beschreibungen für Bitbucket Cloud mit Atlassian Intelligence am besten in folgenden Szenarien funktioniert:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass das Generieren von Pull-Anfragen-Beschreibungen für Bitbucket Cloud mit Atlassian Intelligence in folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für die Definition von Begriffen mit Atlassian Intelligence in Confluence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt beim Generieren von Pull-Anfragen-Beschreibungen mit Atlassian Intelligence Folgendes:
|
SQL-Abfragen in Atlassian Analytics generieren
Das Generieren von SQL-Abfragen mit Atlassian Intelligence in Confluence basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Zu diesen Modellen gehören die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache zu analysieren und zu verstehen, und übersetzt sie dann innerhalb von Atlassian Analytics in SQL (Structured Query Language). Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Stelle Atlassian Intelligence eine Frage in natürlicher Sprache und lass sie in SQL übersetzen, anstatt deine eigenen SQL-Abfragen von Grund auf neu zu schreiben. Nachdem du eine Frage gestellt hast, verwendet Atlassian Intelligence das Atlassian Data Lake-Schema deiner ausgewählten Datenquelle, um eine SQL-Abfrage zu generieren, mit der du Diagramme in deinen Atlassian Analytics-Dashboards erstellen kannst. Außerdem kannst du damit mehr über das Schema im Data Lake erfahren. Das Generieren von SQL-Abfragen mit Atlassian Intelligence funktioniert am besten in folgenden Szenarien:
Bist du dir nicht sicher, welche Fragen du stellen sollst?Hier sind ein paar Vorschläge:
|
Die Modelle, die zum Generieren von SQL-Abfragen mit Atlassian Intelligence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Das Generieren von SQL-Abfragen mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für das Generieren von SQL-Abfragen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt beim Generieren von SQL-Abfragen mit Atlassian Intelligence Folgendes:
|
Generative AI im Editor
Atlassian Intelligence in einem Editor basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Zu diesen Modellen gehören die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Atlassian Intelligence hilft dabei, eine effektive Kommunikation zwischen allen Teams in einer Organisation zu fördern, um Effizienz, Entscheidungsfindung und Prozesse zu verbessern. Die Verwendung von Atlassian Intelligence in einem Editor funktioniert am besten in folgenden Szenarien:
|
Die Modelle zur Verwendung von Atlassian Intelligence in einem Editor können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence in einem Editor in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie Atlassian Intelligence deine Daten in der Bearbeitungsumgebung verwendet. Dieser Abschnitt ergänzt die Informationen, die in unserem Trust Center verfügbar sind. Wir verarbeiten:
Was deine Daten angeht, wendet Atlassian Intelligence in der Bearbeitungsumgebung die folgenden Maßnahmen an:
|
Suche nach Antworten in Confluence
Die Suche von Antworten in Confluence mit Atlassian Intelligence wird durch LLM-Modelle unterstützt, die von OpenAI entwickelt wurden. Diese Modelle beinhalten OpenAI-Modelle, die hier beschrieben werden. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Der Umfang der Wissensdatenbanken nimmt zu schnell zu, als dass Benutzer mit dieser Entwicklung Schritt halten könnten. Dank der Suche nach Antworten in Confluence mit Atlassian Intelligence gelangen Kunden schneller an wichtige Informationen, mit denen sie ihre Aufgaben besser erledigen können. Die Funktion hilft dir dabei, die benötigten Informationen problemlos zu finden. Atlassian Intelligence versteht die Art von Fragen, die du Teamkollegen stellen würdest, und beantwortet sie sofort. Erfahre mehr über die Suche nach Antworten in Confluence mit Atlassian Intelligence. Unserer Meinung nach eignet sich Atlassian Intelligence für die Suche nach Antworten in Confluence am besten, wenn deine Confluence-Site detaillierte, umfassende und aktuelle Inhalte umfasst. Diese Funktion erzeugt keine neuen Inhalte, sondern durchsucht Confluence-Seiten und -Blogs (unter Beachtung von Einschränkungen), um eine Antwort auf deine Frage zu finden. Atlassian Intelligence generiert Antworten ausschließlich auf der Grundlage dessen, was in deiner Confluence-Site enthalten ist und worauf du tatsächlich Zugriff hast. Bist du dir nicht sicher, welche Fragen du stellen sollst?Hier sind ein paar Vorschläge:
|
Du fragst dich vielleicht, wie deine Daten für die Suche nach Antworten in Confluence mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Suche nach Antworten in Confluence mit Atlassian Intelligence Folgendes:
|
Suche nach Vorgängen in Jira
Die Suche nach Vorgängen mit Atlassian Intelligence in Jira basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Zu den Modellen gehören die hier beschriebenen OpenAI-Modelle, die von Atlassian mithilfe generierter synthetischer Daten optimiert wurden. Atlassian Intelligence wendet diese Modelle an, um natürliche Sprache zu analysieren und zu verstehen, und übersetzt sie dann innerhalb unserer Produkte in JQL-Code (Jira Query Language). Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen von OpenAI-Modellen und die OpenAI-Optimierung. In den Forschungsberichten von OpenAI kannst du ebenfalls mehr über diesen Ansatz lesen. |
Du kannst Atlassian Intelligence jetzt auch alles Mögliche in der Alltagssprache fragen, anstatt dir komplexe Abfragen ausdenken zu müssen. Bei der Suche nach Vorgängen mit Atlassian Intelligence wird deine Eingabeaufforderung in eine JQL-Abfrage übersetzt, die deine Suche nach bestimmten Vorgängen beschleunigt. Unserer Meinung nach eignet sich Atlassian Intelligence für die Suche nach Vorgängen am besten in den folgenden Szenarien:
|
Bitte beachte, dass die Modelle, die für die Suche nach Vorgängen mit Atlassian Intelligence verwendet werden, aufgrund ihrer Funktionsweise ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence für die Suche nach Vorgängen in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Denke auch daran, dass du für Atlassian Intelligence möglichst spezifische Aufforderungen formulierst. Stelle sicher, dass du genau die Felder und Werte eingibst, nach denen du suchst. |
Du fragst dich vielleicht, wie deine Daten für die Suche nach Vorgängen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
Was deine Daten angeht, werden bei der Suche nach Vorgängen mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Anfragetypen in Jira Service Management vorschlagen
Das Vorschlagen von Anfragetypen mit Atlassian Intelligence basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Dazu gehören die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence wendet diese Modelle an, um Eingaben in natürlicher Sprache zu analysieren und Empfehlungen für Anfragetypen und Beschreibungen für dich in Jira Service Management zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Verbringe weniger Zeit damit herauszufinden, welche Anfragetypen du für dein Projekt erstellen musst, und lasse dir stattdessen Vorschläge von Atlassian Intelligence geben. Beschreibe einfach deine Arbeit und welche Aufgaben dein Team normalerweise erledigt, um zu sehen, welche Arten von Anfragen du erstellen könntest. Wähle einen der von Atlassian Intelligence generierten Vorschläge aus, um einen Anfragetyp zu erstellen. Erfahre mehr darüber, wie du Atlassian Intelligence nutzen kannst, um Anfragetypen vorzuschlagen. Unserer Meinung nach eignet sich Atlassian Intelligence für Vorschläge zu Anfragetypen am besten in den folgenden Szenarien:
|
Bitte beachte, dass die Modelle, die zum Vorschlagen von Anfragetypen mit Atlassian Intelligence verwendet werden, aufgrund ihrer Funktionsweise ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence für Vorschläge zu Anfragetypen in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten bei der Nutzung von Atlassian Intelligence für Vorschläge zu Anfragetypen verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
Was deine Daten angeht, werden bei der Nutzung von Atlassian Intelligence für Vorschläge zu Anfragetypen die folgenden Maßnahmen angewendet:
|
Zusammenfassung von Vorgangsdetails in Jira Service Management
Die Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Zu diesen Modellen gehören die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Anstatt lange Beschreibungen und zahlreiche Kommentare zu einem Vorgang in Jira Service Management durchzulesen, kannst du Atlassian Intelligence nutzen, um diese Informationen schnell für dich zusammenzufassen. Das hilft Agenten, den Vorgangskontext zu verstehen und den bisherigen Fortschritt nachzuvollziehen. Sie können so schnell Maßnahmen ergreifen und Hilfe leisten. Das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence ist besonders geeignet für:
|
Die Modelle, die zur Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. |
Du fragst dich vielleicht, wie deine Daten für die Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence Folgendes:
|
Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence
Das Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache zu analysieren, und übersetzt sie dann innerhalb von Atlassian Analytics in SQLite. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Beschreibe Atlassian Intelligence, wie du die Daten aus deiner Ergebnistabelle transformieren möchtest. AI übersetzt dies in einen SQLite-Ausdruck, der für benutzerdefinierte Formeln verwendet wird. So musst du deine SQLite-Ausdrücke nicht von Grund auf neu verfassen. Wenn du eine Frage gestellt hast, verwendet Atlassian Intelligence die Daten aus der Ergebnistabelle des vorherigen Visual SQL-Schritts, um einen SQLite-Ausdruck zu generieren, der Berechnungen oder Operationen auf diese Daten für dein Diagramm anwendet. Das kann dir auch helfen, SQLite-Funktionen und ihre Syntax besser zu verstehen. Unserer Meinung nach funktioniert das Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence am besten in Szenarien, in denen Folgendes zutrifft:
|
Denke bei der Verwendung benutzerdefinierter Formeln daran, dass die in Atlassian Intelligence verwendeten Modelle manchmal ungenaue, unvollständige oder unzuverlässige Ergebnisse generieren können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Unserer Erfahrung nach ist das Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für das Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
Für deine Daten gilt beim Erstellen von benutzerdefinierten Formeln mit Atlassian Intelligence Folgendes: Deine Aufforderungen (Eingaben) und Antworten (Ausgaben):
OpenAI ist ein Unterauftragsverarbeiter auf unserer Liste der Unterauftragsverarbeiter. Das Unternehmen verwendet deine Ein- und Ausgaben ausschließlich für die Bearbeitung deiner Anfrage. |
Weitere Informationen zu Atlassian Intelligence
Informationen zur Verwendung von Atlassian Intelligence
Informationen zur Suche nach Antworten in Confluence mit Atlassian Intelligence
Atlassian Intelligence und Rovo stehen für Transparenz
Unser Engagement für offene Kommunikation, Verantwortungsbewusstsein und Unterstützung von Teams zur verantwortungsvollen KI-Nutzung.
Rovo
Wähle unten eine Rovo-Funktion aus, um einen transparenten Überblick über Anwendungsfälle und die Datennutzung zu erhalten.
Arbeit mit AI beschleunigen
Wähle unten eine Atlassian Intelligence-Funktion aus, um einen transparenten Überblick über Anwendungsfälle und die Datennutzung zu erhalten.
- KI-ChatOps für das Vorfallmanagement
- KI-Ressourcen
- KI-Vorschläge
- Automatisierung
- Warnungsgruppierung
- Kurze Zusammenfassung in Confluence
- Definieren von Begriffen
- Generative AI im Editor
- Umformatierungsfunktion für Vorgänge
- Zusammenfassung der Vorgangsdetails
- Zusammenfassen intelligenter Links
- Virtueller Service-Agent
- Vorgangsdetails mit Atlassian Intelligence zusammenfassen
- Aufgliederung der Aufgaben mit KI
- KI-ChatOps für das Vorfallmanagement
- KI-Ressourcen
- KI-Vorschläge
- Automatisierung
- Warnungsgruppierung
- Kurze Zusammenfassung in Confluence
- Definieren von Begriffen
- Generative AI im Editor
- Umformatierungsfunktion für Vorgänge
- Zusammenfassung der Vorgangsdetails
- Zusammenfassen intelligenter Links
- Virtueller Service-Agent
- Vorgangsdetails mit Atlassian Intelligence zusammenfassen
- Aufgliederung der Aufgaben mit KI
Automatisierung mit Atlassian Intelligence
Die KI-ChatOps-Funktionen für das Vorfallmanagement nutzen die großen Sprachmodelle (LLMs), die von OpenAI entwickelt wurden. Außerdem kommt eine Kombination aus Open-Source-LLMs (einschließlich Lama und Phi) und anderen Modellen für maschinelles Lernen zum Einsatz. Zu diesen großen Sprachmodellen gehören die GPT-Modelle von OpenAI. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Große Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle berechnen Wahrscheinlichkeiten für das Aufeinanderfolgen von Wörtern oder Texten und erzeugen daraus eine Ausgabe. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
KI-ChatOps für das Vorfallmanagement ermöglicht eine schnellere Problemlösung, indem neuen Benutzern eine Zusammenfassung des relevanten Vorfalls und aller bisherigen Konversationen darüber angeboten wird, wenn sie zum Slack-Kanal hinzugefügt werden, der mit dem Vorfallmanagement in Jira Service Management verknüpft ist. Zusätzlich kann KI-ChatOps für das Vorfallmanagement die Konversationen, die in Slack stattfinden, in Jira Service Management protokollieren, um später darauf zurückzugreifen. Wir glauben, dass KI-ChatOps für das Vorfallmanagement am besten in den folgenden Szenarien funktioniert:
|
Aufgrund ihrer Funktionsweise können die Modelle, auf denen KI ChatOps für das Vorfallmanagement basiert, zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln oder Inhalte umfassen, die vielleicht sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass KI-ChatOps für das Vorfallmanagement in Szenarien wie den folgenden weniger nützlich ist:
Überlege dir, in welchen Situationen du KI-ChatOps verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Du solltest auch die Berechtigungen überprüfen, um sicherzustellen, dass Benutzer angemessene Zugriffsrechte auf relevante Vorfälle und Slack-Channels haben. |
Du fragst dich vielleicht, wie KI-ChatOps für das Vorfallmanagement deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Wenn es um deine Daten geht, wendet KI-ChatOps für das Vorfallmanagement die folgenden Maßnahmen an:
|
KI-Ressourcen nutzen die großen Sprachmodelle (LLMs), die von OpenAI entwickelt wurden. Außerdem kommt eine Kombination aus Open-Source-LLMs (einschließlich Lama und Phi) und anderen Modellen für maschinelles Lernen zum Einsatz. Zu diesen großen Sprachmodellen gehören die GPT-Modelle von OpenAI. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren und um relevante Antworten von Atlassian und verbundenen Drittanbieterprodukten bereitzustellen. Diese großen Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle berechnen Wahrscheinlichkeiten für das Aufeinanderfolgen von Wörtern oder Texten und erzeugen daraus eine Ausgabe. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Atlassian Intelligence kann deinen Benutzern helfen, Vorfälle schneller zu lösen. Dazu wird eine Liste von Ressourcen vorgeschlagen, auf die verwiesen werden kann. Das können verknüpfte Bereiche deiner Wissensdatenbanken und -artikel, Jira-Vorfälle und (wenn du Rovo-Kunde bist) alle über Rovo integrierten Produkte von Drittanbietern sein. Erfahre mehr über Rovo und Tools von Drittanbietern. KI-Ressourcen funktionieren am besten in den folgenden Szenarien:
|
Beachte, dass die Modelle, die zur Unterstützung von KI-Ressourcen verwendet werden, aufgrund ihrer Funktionsweise manchmal ein Verhalten aufweisen können, das ungenau, unvollständig oder unzuverlässig ist. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass KI-Ressourcen in den folgenden Szenarien weniger nützlich sind:
Überlege dir, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Bedenke zudem Folgendes:
|
Du fragst dich vielleicht, wie KI-Ressourcen deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, wenden KI-Ressourcen die folgenden Maßnahmen an:
|
KI-Vorschläge in Jira Service Management basieren auf von OpenAI entwickelten LLMs und anderen Modellen für maschinelles Lernen. Zu diesen LLMs gehören die GPT-Modelle von OpenAI. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese großen Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle berechnen Wahrscheinlichkeiten für das Aufeinanderfolgen von Wörtern oder Texten und erzeugen daraus eine Ausgabe. Erfahre mehr über die Fähigkeiten der OpenAI-Modelle. |
Mit KI-Vorschlägen in Jira Service Management kann sich dein Team schnell auf den neuesten Stand bringen, indem es wichtige Zusammenhänge zu deinen Serviceanfragen und Vorfällen auf einen Blick erfasst. Atlassian Intelligence unterstützt dein Team bei Folgendem:
KI-Vorschläge in Jira Service Management können auch empfehlen, dass Agenten eine Anfrage oder einen Vorfall eskalieren, wenn das geltende SLA kurz davor steht, verletzt zu werden. Im Fall von Serviceanfragen kann diese Funktion auch vorschlagen, dass Agenten die Anfrage eskalieren, wenn die Modelle, die für diese Vorschläge verwendet wurden, in den Kommentaren des Autors ein Gefühl der Dringlichkeit oder Wut über diese Anfrage erkennen. Wir glauben, dass KI-Vorschläge in Jira Service Management am besten in den folgenden Szenarien funktionieren:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass KI-Vorschläge in Jira Service Management in den folgenden Szenarien weniger hilfreich sind:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für KI-Vorschläge in Jira Service Management verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten werden für KI-Vorschläge die folgenden Maßnahmen angewendet.
|
Die Automatisierung mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um Eingaben in natürlicher Sprache zu analysieren und für dich eine Automatisierungsregel in Jira und Confluence zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle berechnen Wahrscheinlichkeiten für das Aufeinanderfolgen von Wörtern oder Texten und erzeugen daraus eine Ausgabe. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Das Erstellen von Automatisierungsregeln steht bei täglichen Automatisierungsanwendungen im Mittelpunkt. Wir haben Atlassian Intelligence zum Automatisierungsregel-Builder in Jira und Confluence hinzugefügt, um diese Aufgabe für dich noch einfacher machen. Du kannst jetzt mühelos Automatisierungsregeln erstellen, indem du einfach eingibst und beschreibst, was du automatisieren möchtest. Die komplexe Erstellung der Regel kannst du dann Atlassian Intelligence überlassen. Erfahre mehr über Automatisierung mit Atlassian Intelligence für Jira und für Confluence. Wir sind der Meinung, dass die Automatisierung mit Atlassian Intelligence für Jira und Confluence am besten in Situationen funktioniert, in denen du dir nicht sicher bist, wie du anfangen sollst, oder wenn du den Prozess der Regelerstellung beschleunigen möchtest. Du bist dir nicht sicher, wie du am besten eine Automatisierungsregel erstellst?Automatisierungsregeln werden aus einer Kombination verschiedener Arten von Komponenten erstellt: Trigger, Aktionen, Bedingungen und Branches. Stell dir Komponenten als die Bausteine einer Regel vor. Um mit Atlassian Intelligence erfolgreich eine Regel zu erstellen, muss diese mindestens einen Trigger und eine Aktion enthalten. Ein Beispiel: In Jira: Suche jeden Montag nach allen Aufgaben mit einem Fälligkeitsdatum in den nächsten sieben Tagen und sende der zugewiesenen Person eine E-Mail-Erinnerung. Wenn ein Ticket in die Testphase verschoben wird, das Ticket John Smith zuweisen. In Confluence:
Damit eine Regel erfolgreich erstellt werden kann, müssen außerdem alle ihre Komponenten von der Automatisierung mit Atlassian Intelligence unterstützt werden. Das bedeutet, dass alle Trigger, Aktionen, Bedingungen oder Branches in deiner Regel mit der Automatisierung in Jira und/oder Confluence kompatibel sein müssen. |
Bitte beachte, dass die Modelle, die zur Unterstützung der Automatisierung mit Atlassian Intelligence verwendet werden, unter Umständen ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Die Automatisierung mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Die Automatisierung mit Atlassian Intelligence funktioniert nur mit den vorhandenen verfügbaren Automatisierungskomponenten in Jira und Confluence. Denke auch daran, dass du für Atlassian Intelligence möglichst spezifische Aufforderungen formulierst, wie oben beschrieben. |
Du fragst dich vielleicht, wie die Automatisierung mit Atlassian Intelligence deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden für die Nutzung von Atlassian Intelligence für die Confluence-Automatisierung die folgenden Maßnahmen angewendet:
Alle LLM-Drittanbieter sind Unterauftragsverarbeiter und werden als solche auf unserer Seite für Unterauftragsverarbeiter aufgeführt. Sie verwenden deine Ein- und Ausgaben ausschließlich für die Bearbeitung deiner Anfrage. Diese Funktion richtet sich nach den Berechtigungen in deiner Instanz. Wenn du zum Beispiel keinen Zugriff auf ein bestimmtes Projekt oder eine bestimmte Seite hast, werden dir in der Antwort, die du erhältst, keine Inhalte aus diesen Ressourcen vorgeschlagen. Wenn du nicht möchtest, dass deine Inhalte in Antworten für andere Nutzer in deiner Instanz verfügbar sind, wende dich an deinen Organisationsadministrator, um die Berechtigungen richtig einzustellen. |
Warnungsgruppierung
Die Gruppierung von Warnmeldungen mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen Modellen zählen ein für die Erkennung von Mustern in Warnmeldungsdaten entwickelter Algorithmus sowie die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle für maschinelles Lernen, um Warnungsgruppen zu analysieren und zu generieren und entsprechende Vorschläge (frühere Warnungsgruppen und Reagierende) innerhalb unserer Produkte zu unterbreiten, die auf der Ähnlichkeit des Warnmeldungsinhalts oder der verwendeten Tags basieren. Atlassian Intelligence verwendet dann große Sprachmodelle, um Beschreibungen und Inhalte in natürlicher Sprache für diese Gruppen in unseren Produkten zu analysieren und zu generieren. Diese großen Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Die Warnungsgruppierung verwendet Atlassian Intelligence, um ähnliche Warnmeldungen zu identifizieren und zu gruppieren. Außerdem unterstützt dich die Funktion, indem sie frühere ähnliche Warnungsgruppen und Reagierende (oder entsprechende Teams) identifiziert und vorschlägt, basierend auf der semantischen Ähnlichkeit des Warnmeldungsinhalts oder der verwendeten Tags. Wenn du die Warnungsgruppe zu einem Vorfall eskalieren möchtest, füllt die Warnungsgruppierung auch alle Kontextinformationen vorab aus. Im Rahmen der Vorfallerstellung kannst du diese dann überprüfen. Die Warnungsgruppierung funktioniert am besten in den folgenden Szenarien:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Die Warnungsgruppen, die dir angezeigt werden, entsprechen möglicherweise nicht genau der semantischen Ähnlichkeit der zugehörigen Tags. Wir haben festgestellt, dass die Warnungsgruppierung in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Außerdem solltest du sicherstellen, dass du und dein Team einheitliche Verfahren bei der Verwendung von Warnungs-Tags befolgen. |
Du fragst dich vielleicht, wie die Warnmeldungsgruppierung deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Wir verarbeiten deine Warnmeldungsdaten, um eine Version des Modells für maschinelles Lernen dafür zu trainieren, spezifische Muster in deinen Warnmeldungen zu erkennen. Diese Version wird nur verwendet, um dein Erlebnis zu verbessern:
In Bezug auf deine Daten wendet die Warnungsgruppierung folgende Maßnahmen an:
|
Die Zusammenfassung von Seiten und Blogs mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Spare Zeit und erhalte genau die Informationen, die du für schnelleres Arbeiten benötigst. Lasse dir hierzu mit Atlassian Intelligence eine kurze Zusammenfassung einer Confluence-Seite oder eines Confluence-Blogs generieren. Weitere Informationen zur Verwendung von Atlassian Intelligence in Confluence Wir sind der Meinung, dass das Zusammenfassen von Seiten und Blogs mit Atlassian Intelligence in den folgenden Situationen am besten funktioniert:
|
Bitte beachte, dass die Funktionsweise der Modelle, die für die Zusammenfassungen von Seiten und Blogs mit Atlassian Intelligence eingesetzt werden, unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen kann. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir arbeiten zwar an einer besseren Unterstützung für Makros und Tabellen und weiten diese auf Zusammenfassungen aus, haben jedoch festgestellt, dass das Zusammenfassen von Seiten und Blogs mit Atlassian Intelligence in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für die Nutzung von Atlassian Intelligence für die Confluence-Automatisierung verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden für die Zusammenfassung von Seiten und Blogs mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Begriffe mit Atlassian Intelligence definieren
Das Definieren von Begriffen in Confluence und Jira mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in Confluence und Jira zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Eine der größten Herausforderungen bei der Nutzung von Inhalten in Confluence und Jira kann darin bestehen, den nötigen Kontext zu finden, um das Gelesene zu verstehen. Abkürzungen, Akronyme, unbekannte Begriffe und team- oder projektspezifische Namen können zu einer langwierigen Suche nach den nötigen Informationen führen. Durch die Definition von Begriffen mithilfe von Atlassian Intelligence werden unternehmensspezifische Begriffe (wie Akronyme, Projekt-, System- oder Teamnamen) auf einer Seite in Confluence oder in einer Vorgangsbeschreibung in Jira definiert. Dadurch erhalten Benutzer jederzeit die von ihnen benötigten Informationen – und deine Teams können besser zusammenarbeiten. Mit Atlassian Intelligence sparst du Zeit durch automatische Definitionen, ohne die gerade geöffnete Seite verlassen zu müssen. Wenn du auf eine Definition stößt, die du für ungenau hältst, kannst du sie bearbeiten oder eine neue Definition hinzufügen. Anschließend kannst du festlegen, ob sie für die jeweilige Seite oder den jeweiligen Vorgang, den gesamten Bereich oder das gesamte Projekt oder für deine gesamte Organisation sichtbar sein soll. Die Definition von Begriffen mithilfe von Atlassian Intelligence in Confluence und Jira funktioniert am besten in folgenden Szenarien:
|
Die Modelle, die zur Definition von Begriffen mit Atlassian Intelligence in Confluence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Definition von Begriffen mithilfe von Atlassian Intelligence in Confluence in folgenden Szenarien weniger nützlich ist:
Da die Definition von Begriffen mithilfe von Atlassian Intelligence von der Suche in Confluence abhängt, funktioniert sie in Jira nur, wenn du berechtigt bist, eine Confluence-Instanz auf derselben Site wie deine Jira-Instanz anzusehen. Vielleicht wirst du auch feststellen, dass das Definieren von Begriffen mithilfe von Atlassian Intelligence in bestimmten Confluence-Bereichen oder Jira-Instanzen nicht wie erwartet funktioniert, weil die darin enthaltenen Inhalte in mehreren Sprachen verfasst sind. |
Du fragst dich vielleicht, wie deine Daten für die Definition von Begriffen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden bei der Definition von Begriffen mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Generative AI im Editor
Der Einsatz von Atlassian Intelligence in Bearbeitungsumgebungen beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Atlassian Intelligence hilft dabei, eine effektive Kommunikation zwischen allen Teams in einer Organisation zu fördern, um Effizienz, Entscheidungsfindung und Prozesse zu verbessern. Die Verwendung von Atlassian Intelligence in einem Editor funktioniert am besten in folgenden Szenarien:
|
Die Modelle zur Verwendung von Atlassian Intelligence in einem Editor können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence in einem Editor in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie Atlassian Intelligence deine Daten in der Bearbeitungsumgebung verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, wendet Atlassian Intelligence in der Bearbeitungsumgebung die folgenden Maßnahmen an:
|
Die Umformatierungsfunktion für Vorgänge basiert auf LLMs, die von OpenAI entwickelt wurden, einschließlich der GPT-Modellserie von OpenAI. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in Jira zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Fähigkeiten der OpenAI-Modelle. |
Die Umformatierungsfunktion für Vorgänge hilft dabei, die Klarheit deiner Jira-Vorgangsbeschreibungen zu verbessern, indem sie sie mithilfe einer von Atlassian entwickelten Vorlage neu formatiert. Diese Vorlage deckt die Arten von Informationen ab, die wir normalerweise in einer Jira-Vorgangsbeschreibung erwarten, z. B. eine User Story, Kontext zur Arbeit und Akzeptanzkriterien. Wir glauben, dass die Umformatierungsfunktion für Vorgänge am besten in Szenarien funktioniert, in denen deine Vorgangsbeschreibungen bereits nützliche Informationen enthalten (wie Akzeptanzkriterien oder Links zu Quellen), diese Informationen jedoch nicht nach einer klaren oder konsistenten Struktur formatiert sind. |
Aufgrund Ihrer Funktionsweise können Modelle zur Verwendung dieser Funktion unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Zum Beispiel gibt deine neu formatierte Beschreibung möglicherweise nicht genau den Inhalt wieder, auf dem sie basiert, oder sie könnte Details enthalten, die vernünftig klingen, aber falsch oder unvollständig sind. Unserer Erfahrung nach ist die Umformatierungsfunktion für Vorgänge in den folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Darüber hinaus ist es empfehlenswert, deine Vorgangsbeschreibungen darauf zu überprüfen, dass sie alle relevanten Informationen enthalten, bevor du die Umformatierungsfunktion für Vorgänge verwendest. |
Vielleicht fragst du dich, wie deine Daten von der Umformatierungsfunktion für Vorgänge verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Umformatierungsfunktion für Vorgänge Folgendes:
|
Zusammenfassung von Vorgangsdetails in Jira Service Management
Die Zusammenfassung von Vorgangsdetails mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Anstatt lange Beschreibungen und zahlreiche Kommentare zu einem Vorgang in Jira Service Management durchzulesen, kannst du Atlassian Intelligence nutzen, um diese Informationen schnell für dich zusammenzufassen. Das hilft Agenten, den Vorgangskontext zu verstehen und den bisherigen Fortschritt nachzuvollziehen. Sie können so schnell Maßnahmen ergreifen und Hilfe leisten. Das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence ist besonders geeignet für:
|
Die Modelle, die zur Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. |
Du fragst dich vielleicht, wie deine Daten für die Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence Folgendes:
|
Generative AI im Editor
Die Zusammenfassung von intelligenten Links mithilfe von Atlassian Intelligence (AI) beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Wenn du in Jira, Confluence oder Google Docs den Mauszeiger über einen intelligenten Link bewegst, kann dir Atlassian Intelligence den Inhalt zusammenfassen, damit du die Relevanz des Links beurteilen und über die nächsten Schritte entscheiden kannst. Dies reduziert Kontextwechsel, da du die aktuelle Seite nicht verlassen musst. Die Zusammenfassung intelligenter Links mit KI funktioniert am besten in den folgenden Szenarien:
|
Die Modelle für die Zusammenfassung intelligenter Links mit KI können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Zusammenfassungen erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Zusammenfassung intelligenter Links mit KI in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. |
Du fragst dich vielleicht, wie deine Daten für die Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, wendet die Zusammenfassung intelligenter Links mit KI die folgenden Maßnahmen an.
|
Atlassian Intelligence-Antworten in Jira Service Management
Der virtuelle Service-Agent von Jira Service Management nutzt die großen Sprachmodelle (LLMs), die von OpenAI, Google und Anthropic entwickelt wurden. Außerdem kommt eine Kombination aus Open-Source-LLMs (einschließlich Lama, Phi und Mistral) und anderen Modellen für maschinelles Lernen zum Einsatz. Der virtuelle Service-Agent verwendet diese Modelle wie folgt:
So funktionieren LLMs: LLMs generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Zu diesen LLMs, auf denen der virtuelle Service-Agent basiert, gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Der virtuelle Service-Agent hilft Teams dabei, Supportinteraktionen der Stufe 1 zu automatisieren. Er wird von einer Konversations-Engine von Atlassian Intelligence unterstützt, die Absichten, Kontexte und Berechtigungen analysiert und versteht, um Interaktionen zu personalisieren. Mithilfe von Atlassian Intelligence unterstützt der virtuelle Service-Agent Teams dabei, ihre Servicedesks zu skalieren, und begeistert Kunden mit drei wichtigen Funktionen:
Der virtuelle Service-Agent ist auf mehreren Kanälen verfügbar, darunter Slack, Microsoft Teams, dem Jira Service Management-Portal und anderen. Erfahre mehr darüber, welche Kanäle für den virtuellen Service-Agenten verfügbar sind. Wir glauben, dass der virtuelle Service-Agent am besten in folgenden Szenarien funktioniert:
|
Aufgrund ihrer Funktionsweise können Modelle zur Verwendung des virtuellen Service-Agenten unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Du bekommst beispielsweise Antworten, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder die Informationen enthalten, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass sich der virtuelle Service-Agent für die folgenden Szenarien weniger eignet:
Stelle dir Situationen vor, in denen du Atlassian Intelligence verwenden würdest, und überprüfe die Leistung des virtuellen Service-Agenten, bevor du ihn für Kunden aktivierst. Erfahre mehr darüber, wie du die Leistung deines virtuellen Service-Agenten verbessern kannst. Wir empfehlen dir außerdem:
|
Wir verstehen, dass du möglicherweise Fragen dazu hast, wie der virtuelle Service-Agent von Jira Service Management deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten anbelangt, wendet der virtuelle Service-Agent die folgenden Maßnahmen an:
|
Vorgangsdetails mit Atlassian Intelligence zusammenfassen
Die AI-Zusammenfassungen in Jira beruhen auf LLMs, die von OpenAI entwickelt wurden. Dazu zählen die hier beschriebenen OpenAI-Modelle. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, für ihre Antworten prognostizieren die Modelle anhand der Daten, mit denen sie trainiert wurden, welches Wort oder welcher Text wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Anstatt lange Beschreibungen und zahlreiche Kommentare zu einem Vorgang in Jira durchzulesen, kannst du Atlassian Intelligence nutzen, um diese Informationen schnell für dich zusammenzufassen. Das hilft den Agenten, den Kontext des Vorgangs und alle erzielten Fortschritte schnell zu verstehen, sodass sie schnell handeln und rechtzeitig Hilfe leisten können. Wir glauben, dass das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence am besten für Vorgänge mit einer großen Anzahl von Kommentaren und/oder langen Kommentaren und Beschreibungen funktioniert. |
Aufgrund ihrer Funktionsweise können Modelle, die AI-Zusammenfassungen in Jira unterstützen, unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Das Zusammenfassen von Vorgangsdetails mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Daher solltest du dir überlegen, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. |
Du fragst dich vielleicht, wie deine Daten für die Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Zusammenfassung von Vorgangsdetails mit Atlassian Intelligence Folgendes:
|
Aufgliederung der Aufgaben mit KI
Die KI-Arbeitsaufgliederung beruht auf LLMs, die von OpenAI entwickelt wurden. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Die KI-Arbeitsaufgliederung schlägt untergeordnete Vorgänge auf der Grundlage eines von dir erstellten Jira-Vorgangs vor, sodass du große Aufgaben in kleinere Unteraufgaben aufteilen kannst. Dein Vorgang wird als Kontext verwendet, um Vorschläge für Zusammenfassungen und Beschreibungen von untergeordneten Vorgängen zu generieren. Unserer Meinung nach funktioniert die KI-Arbeitsaufgliederung am besten in Szenarien, in denen Folgendes zutrifft:
|
Aufgrund ihrer Funktionsweise können Modelle, die für die KI-Arbeitsaufgliederung verwendet werden, unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die KI-Arbeitsaufgliederung in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Vielleicht fragst du dich, wie deine Daten von der KI-Arbeitsaufgliederung verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten wendet die KI-Arbeitsaufgliederung die folgenden Maßnahmen an.
|
Nutze KI, um Arbeit voranzubringen
Wähle unten eine Atlassian Intelligence-Funktion aus, um einen transparenten Überblick über Anwendungsfälle und die Datennutzung zu erhalten.
Die KI-gestützte Erstellung von Vorfällen mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingabe und sind probabilistischer Natur. Das bedeutet, für ihre Antworten prognostizieren die Modelle anhand der Daten, mit denen sie trainiert wurden, welches Wort oder welcher Text wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Wenn du in Jira Service Management eine oder mehrere Warnmeldungen oder Warnungsgruppen zu einem Vorfall eskalierst, nutzt "create incident with AI" Atlassian Intelligence, um alle Kontextinformationen vorauszufüllen, damit du sie im Rahmen der Vorfallerstellung überprüfen kannst. Auf diese Weise können Benutzer den Kontext des Vorfalls, der anhand dieser Warnmeldungen oder Warnungsgruppen erstellt wurde, schnell verstehen und vorausgefüllte Informationen wie Titel, Beschreibung und Priorität der Warnmeldung überprüfen und bestätigen, wenn sie zu einem Vorfall eskaliert wird. Die Funktion "create incident with AI" funktioniert am besten in den folgenden Szenarien:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass "create incident with AI" in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Um die nützlichsten Ergebnisse zu erhalten, solltest du so genau wie möglich beschreiben, was Atlassian Intelligence machen soll. Denke auch daran, dass du für Atlassian Intelligence möglichst spezifische Aufforderungen formulierst. |
Du fragst dich vielleicht, wie "create incident with AI" deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, wendet "create incident with AI" die folgenden Maßnahmen an.
|
PIR (Überprüfung nach einem Vorfall) erstellen
Die Erstellung eines PIRs durch Atlassian Intelligence basiert auf großen Sprachmodellen, die von OpenAI entwickelt wurden. Zu diesen großen Sprachmodellen gehört die GPT-Modellserie von OpenAI. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf Grundlage der Benutzereingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
PIRs sind ein zentraler Bestandteil des Vorfallmanagementprozesses und unterstützen Vorfallsverantwortliche und Manager dabei, aus aktuellen Vorfällen zu lernen und Erkenntnisse weiterzugeben, um ähnliche Vorfälle in Zukunft zu verhindern. Atlassian Intelligence hilft dabei, die oft zeitaufwändige Erstellung eines PIRs zu beschleunigen, indem dir eine PIR-Beschreibung vorgeschlagen wird, die auf relevanten Kontextinformationen in deiner Jira Service Management-Instanz und in Chattools wie Slack basiert, sodass du sie überprüfen kannst. Die PIR-Erstellung mit AI funktioniert am besten in den folgenden Szenarien:
|
Aufgrund Ihrer Funktionsweise können Modelle zur Verwendung dieser Funktion unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die vielleicht sinnvoll klingen, aber falsch oder unvollständig sind. Die PIR-Erstellung mit AI ist in den folgenden Szenarien weniger nützlich:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie bei der PIR-Erstellung mit AI deine Daten verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden für die PIR-Erstellung die folgenden Maßnahmen angewendet.
|
Beschreibungen für Pull-Anfragen mit Atlassian Intelligence generieren
Das Generieren von Beschreibungen für Pull-Anfragen mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache und Code in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Atlassian Intelligence kann dir helfen, Inhalte zu generieren, zu transformieren und zusammenzufassen, während du im Rahmen der Code-Prüfung von Bitbucket Cloud Beschreibungen für oder Kommentare zu Pull-Anfragen verfasst. Dazu gehört beispielsweise:
Wir sind der Meinung, dass das Generieren von Pull-Anfragen-Beschreibungen für Bitbucket Cloud mit Atlassian Intelligence am besten in folgenden Szenarien funktioniert:
|
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass das Generieren von Pull-Anfragen-Beschreibungen für Bitbucket Cloud mit Atlassian Intelligence in folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für die Definition von Begriffen mit Atlassian Intelligence in Confluence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
In Bezug auf deine Daten gilt beim Generieren von Pull-Anfragen-Beschreibungen mit Atlassian Intelligence Folgendes:
|
SQL-Abfragen in Atlassian Analytics generieren
Das Generieren von SQL-Abfragen mithilfe von Atlassian Intelligence in Atlassian Analytics beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache zu analysieren und zu verstehen, und übersetzt sie dann innerhalb von Atlassian Analytics in SQL (Structured Query Language). Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Stelle Atlassian Intelligence eine Frage in natürlicher Sprache und lass sie in SQL übersetzen, anstatt deine eigenen SQL-Abfragen von Grund auf neu zu schreiben. Nachdem du eine Frage gestellt hast, verwendet Atlassian Intelligence das Atlassian Data Lake-Schema deiner ausgewählten Datenquelle, um eine SQL-Abfrage zu generieren, mit der du Diagramme in deinen Atlassian Analytics-Dashboards erstellen kannst. Außerdem kannst du damit mehr über das Schema im Data Lake erfahren. Das Generieren von SQL-Abfragen mit Atlassian Intelligence funktioniert am besten in folgenden Szenarien:
Bist du dir nicht sicher, welche Fragen du stellen sollst?Hier sind ein paar Vorschläge:
|
Die Modelle, die zum Generieren von SQL-Abfragen mit Atlassian Intelligence verwendet werden, können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Das Generieren von SQL-Abfragen mit Atlassian Intelligence ist in folgenden Fällen weniger geeignet:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten für das Generieren von SQL-Abfragen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
In Bezug auf deine Daten gilt beim Generieren von SQL-Abfragen mit Atlassian Intelligence Folgendes:
|
Suche nach Antworten in Confluence
Die Suche nach Antworten in Confluence mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Der Umfang der Wissensdatenbanken nimmt zu schnell zu, als dass Benutzer mit dieser Entwicklung Schritt halten könnten. Dank der Suche nach Antworten in Confluence mit Atlassian Intelligence gelangen Kunden schneller an wichtige Informationen, mit denen sie ihre Aufgaben besser erledigen können. Die Funktion hilft dir dabei, die benötigten Informationen problemlos zu finden. Atlassian Intelligence versteht die Art von Fragen, die du Teamkollegen stellen würdest, und beantwortet sie sofort. Erfahre mehr über die Suche nach Antworten in Confluence mit Atlassian Intelligence. Unserer Meinung nach eignet sich Atlassian Intelligence für die Suche nach Antworten in Confluence am besten, wenn deine Confluence-Site detaillierte, umfassende und aktuelle Inhalte umfasst. Diese Funktion erzeugt keine neuen Inhalte, sondern durchsucht Confluence-Seiten und -Blogs (unter Beachtung von Einschränkungen), um eine Antwort auf deine Frage zu finden. Atlassian Intelligence generiert Antworten ausschließlich auf der Grundlage dessen, was in deiner Confluence-Site enthalten ist und worauf du tatsächlich Zugriff hast. Bist du dir nicht sicher, welche Fragen du stellen sollst?Hier sind ein paar Vorschläge:
|
Du fragst dich vielleicht, wie deine Daten für die Suche nach Antworten in Confluence mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
In Bezug auf deine Daten gilt bei der Suche nach Antworten in Confluence mit Atlassian Intelligence Folgendes:
|
Suche nach Vorgängen in Jira
Die Suche nach Vorgängen in Jira mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence wendet diese Modelle an, um natürliche Sprache zu analysieren und zu verstehen, und übersetzt sie dann innerhalb unserer Produkte in JQL-Code (Jira Query Language). Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Du kannst Atlassian Intelligence jetzt auch alles Mögliche in der Alltagssprache fragen, anstatt dir komplexe Abfragen ausdenken zu müssen. Bei der Suche nach Vorgängen mit Atlassian Intelligence wird deine Eingabeaufforderung in eine JQL-Abfrage übersetzt, die deine Suche nach bestimmten Vorgängen beschleunigt. Unserer Meinung nach eignet sich Atlassian Intelligence für die Suche nach Vorgängen am besten in den folgenden Szenarien:
|
Bitte beachte, dass die Modelle, die für die Suche nach Vorgängen mit Atlassian Intelligence verwendet werden, aufgrund ihrer Funktionsweise ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence für die Suche nach Vorgängen in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Denke auch daran, dass du für Atlassian Intelligence möglichst spezifische Aufforderungen formulierst. Stelle sicher, dass du genau die Felder und Werte eingibst, nach denen du suchst. |
Du fragst dich vielleicht, wie deine Daten für die Suche nach Vorgängen mit Atlassian Intelligence verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden bei der Suche nach Vorgängen mit Atlassian Intelligence folgende Maßnahmen angewendet:
|
Aufgliederung der Aufgaben mit KI
Die KI-Arbeitsaufgliederung beruht auf LLMs, die von OpenAI entwickelt wurden. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Lies mehr über die Funktionen der OpenAI-Modelle oder informiere dich in den OpenAI-Forschungsberichten über den Ansatz. |
Die KI-Arbeitsaufgliederung schlägt untergeordnete Vorgänge auf der Grundlage eines von dir erstellten Jira-Vorgangs vor, sodass du große Aufgaben in kleinere Unteraufgaben aufteilen kannst. Dein Vorgang wird als Kontext verwendet, um Vorschläge für Zusammenfassungen und Beschreibungen von untergeordneten Vorgängen zu generieren. Unserer Meinung nach funktioniert die KI-Arbeitsaufgliederung am besten in Szenarien, in denen Folgendes zutrifft:
|
Aufgrund ihrer Funktionsweise können Modelle, die für die KI-Arbeitsaufgliederung verwendet werden, unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die KI-Arbeitsaufgliederung in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Vielleicht fragst du dich, wie deine Daten von der KI-Arbeitsaufgliederung verwendet werden. Dieser Abschnitt ergänzt die Informationen aus unserem Trust Center. Wir verarbeiten:
In Bezug auf deine Daten wendet die KI-Arbeitsaufgliederung die folgenden Maßnahmen an.
|
Suggested topics in knowledge base is powered by large language models developed by OpenAI and Anthropic, as well as a combination of open-source transformer-based language models and other machine learning models. These large language models include OpenAI’s GPT series of models and Anthropic’s Claude series of models. Atlassian Intelligence uses these models to analyze and generate natural language within our products. The open-source encoder models convert your textual inputs into numerical forms (embeddings) which are used for identifying and forming topics from your inputs. Diese großen Sprachmodelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle berechnen Wahrscheinlichkeiten für das Aufeinanderfolgen von Wörtern oder Texten und erzeugen daraus eine Ausgabe. Read more about the capabilities of OpenAI’s models and Anthropic’s models. For more information on open-source language models, see information on Multi-QA-miniLM and E5-Multilingual. |
This feature helps admins and agents understand the gaps in their knowledge base by analyzing the service requests received in a project. This feature clearly highlights the topics for which help seekers are raising requests (based on data in the last 30 days) but there’s no existing knowledge. By suggesting topics, we want to give project admins and agents visibility into how many requests can be deflected or at least resolved with knowledge. We believe that increasing the number of knowledge articles will influence the performance of other features in Jira Service Management such as Virtual Service Agent’s AI answers. When admins or agents create articles on the suggested topics, it can also help improve the resolution rate of requests resolved using AI answers. We believe that suggested topics work best in scenarios where:
|
It’s important to remember that because of the way that the models used to power suggested topics in knowledge base work, these models can sometimes behave in ways that are inaccurate, incomplete or unreliable. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. We’ve found that suggested topics in knowledge base is less useful in scenarios where:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
We understand you may have questions about how suggested topics uses your data. This section supplements the information available on our Trust Center. Wir verarbeiten:
When it comes to your data, suggested topics in knowledge base applies the following measures. Your suggested topics in knowledge base:
|
Sofortige Einblicke durch Daten erhalten
Wähle unten eine Atlassian Intelligence-Funktion aus, um einen transparenten Überblick über Anwendungsfälle und die Datennutzung zu erhalten.
Chart Insights
Chart Insights beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence verwendet diese Modelle, um natürliche Sprache in unseren Produkten zu analysieren und zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Chart Insights nutzt Atlassian Intelligence, um dir schnellere Dateneinblicke in Atlassian-Analytics-Diagrammen zu bieten. Dazu werden der Dashboard-Titel, der Diagrammtitel und die Diagrammdaten (einschließlich Spaltenüberschriften und Zeilenwerte) verwendet, um eine Zusammenfassung des Diagramms und der enthaltenen Daten in natürlicher Sprache zu generieren. Außerdem versucht es, Trends oder Anomalien zu identifizieren, um dir spezifische Einblicke in das Diagramm zu geben. Chart Insights funktioniert am besten in den folgenden Szenarien:
Balkendiagramme, Liniendiagramme und Balken-Linien-Kombinationen funktionieren am besten mit dieser Funktion, da sie in der Regel Trends, Daten und viele Datenzeilen enthalten. |
Die Modelle zur Verwendung dieser Funktion können unter Umständen zu ungenauen, unvollständigen oder unzuverlässigen Ergebnissen führen. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass Chart Insights in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie Chart Insights deine Daten verwendet. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, wendet Chart Insights die folgenden Maßnahmen an.
|
Anfragetypen in Jira Service Management vorschlagen
Das Vorschlagen von Anfragetypen mithilfe von Atlassian Intelligence beruht auf von OpenAI, Google und Anthropic entwickelten großen Sprachmodellen sowie einer Kombination aus großen Open-Source-Sprachmodellen (einschließlich der Llama-Serie, Phi-Serie und Mixtral-Serie) und anderen Modellen für maschinelles Lernen. Zu diesen großen Sprachmodellen gehören die GPT-Modellreihe von OpenAI, die Gemini-Modellreihe von Google und die Claude-Modellreihe von Anthropic. Atlassian Intelligence wendet diese Modelle an, um Eingaben in natürlicher Sprache zu analysieren und Empfehlungen für Anfragetypen und Beschreibungen für dich in Jira Service Management zu generieren. Diese Modelle generieren Antworten auf der Grundlage deiner Eingaben und sind probabilistischer Natur. Das bedeutet, sie generieren Antworten basierend auf den Daten, mit denen sie trainiert wurden. Die Modelle prognostizieren also das Wort oder den Text, das/der wahrscheinlich als Nächstes folgt. Erfahre mehr über die Funktionen der OpenAI-Modelle, der Modelle von Google und der Modelle von Anthropic. Weitere Informationen zu Open-Source-Sprachmodellen findest du in den Informationen zur Llama-Serie und zur Phi-Serie. |
Verbringe weniger Zeit damit herauszufinden, welche Anfragetypen du für dein Projekt erstellen musst, und lasse dir stattdessen Vorschläge von Atlassian Intelligence geben. Beschreibe einfach deine Arbeit und welche Aufgaben dein Team normalerweise erledigt, um zu sehen, welche Arten von Anfragen du erstellen könntest. Wähle einen der von Atlassian Intelligence generierten Vorschläge aus, um einen Anfragetyp zu erstellen. Erfahre mehr darüber, wie du Atlassian Intelligence nutzen kannst, um Anfragetypen vorzuschlagen. Unserer Meinung nach eignet sich Atlassian Intelligence für Vorschläge zu Anfragetypen am besten in den folgenden Szenarien:
|
Bitte beachte, dass die Modelle, die zum Vorschlagen von Anfragetypen mit Atlassian Intelligence verwendet werden, aufgrund ihrer Funktionsweise ungenaue, unvollständige oder unzuverlässige Ergebnisse liefern können. Es könnte beispielsweise sein, dass du Antworten erhältst, die den Inhalt, auf dem sie basieren, nicht genau widerspiegeln, oder Inhalte umfassen, die sinnvoll klingen, aber falsch oder unvollständig sind. Wir haben festgestellt, dass die Verwendung von Atlassian Intelligence für Vorschläge zu Anfragetypen in den folgenden Szenarien weniger nützlich ist:
Überlege dir also, in welchen Situationen du Atlassian Intelligence verwenden möchtest. Außerdem solltest du die Qualität der generierten Antworten überprüfen, bevor du sie mit anderen teilst. Wir empfehlen dir außerdem:
|
Du fragst dich vielleicht, wie deine Daten bei der Nutzung von Atlassian Intelligence für Vorschläge zu Anfragetypen verwendet werden. Dieser Abschnitt ergänzt die Informationen auf unserer FAQ-Seite. Wir verarbeiten:
Was deine Daten angeht, werden bei der Nutzung von Atlassian Intelligence für Vorschläge zu Anfragetypen die folgenden Maßnahmen angewendet:
|
Referenzen
Erhalte Status-Updates für Atlassian-Produkte in Echtzeit auf unserer speziellen Statusseite.
Erfahre mehr über Atlassian Intelligence
Erfahre, wie Atlassian Kundendaten verwaltet.